990 resultados para Probabilistic assessment
Resumo:
As the level of autonomy in Unmanned Aircraft Systems (UAS) increases, there is an imperative need for developing methods to assess robust autonomy. This paper focuses on the computations that lead to a set of measures of robust autonomy. These measures are the probabilities that selected performance indices related to the mission requirements and airframe capabilities remain within regions of acceptable performance.
Resumo:
Uncertainty assessments of herbicide losses from rice paddies in Japan associated with local meteorological conditions and water management practices were performed using a pesticide fate and transport model, PCPF-1, under the Monte Carlo (MC) simulation scheme. First, MC simulations were conducted for five different cities with a prescribed water management scenario and a 10-year meteorological dataset of each city. The effectiveness of water management was observed regarding the reduction of pesticide runoff. However, a greater potential of pesticide runoff remained in Western Japan. Secondly, an extended analysis was attempted to evaluate the effects of local water management and meteorological conditions between the Chikugo River basin and the Sakura River basin using uncertainty inputs processed from observed water management data. The results showed that because of more severe rainfall events, significant pesticide runoff occurred in the Chikugo River basin even when appropriate irrigation practices were implemented. © Pesticide Science Society of Japan.
Resumo:
Colombia is one the largest per capita mercury polluters as a consequence of its artisanal gold mining operations, which are steadily increasing following the rising price of this metal. Compared to gravimetric separation methods and cyanidation, the concentration of gold using Hg amalgams presents several advantages: the process is less time-consuming and minimizes gold losses, and Hg is easily transported and inexpensive relative to the selling price of gold. Very often, mercury amalgamation is carried out on site by unprotected workers. During this operation large amounts of mercury are discharged to the environment and eventually reach the fresh water bodies in the vicinity where it is subjected to methylation. Additionally, as gold is released from the amalgam by heating on open charcoal furnaces in small workshops, mercury vapors are emitted and inhaled by the artisanal smelters and the general population
Resumo:
The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 export fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Monte Carlo scheme to construct a 1000-member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean–sediment fluxes are considered. For local dissolution rates, either a strong or a weak dependency on CaCO3 saturation is assumed. In addition, there is the option to have saturation-independent dissolution above the saturation horizon. The median (and 68 % confidence interval) of the constrained model ensemble for global biogenic CaCO3 export is 0.90 (0.72–1.05) Gt C yr−1, that is within the lower half of previously published estimates (0.4–1.8 Gt C yr−1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo–Pacific, the northern Pacific and relatively small in the Atlantic. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport timescales for the different set-ups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve skill. We suggest applying saturation-independent dissolution rates in Earth system models to minimise computational costs.
Resumo:
In a probabilistic assessment of the performance of structures subjected to uncertain environmental loads such as earthquakes, an important problem is to determine the probability that the structural response exceeds some specified limits within a given duration of interest. This problem is known as the first excursion problem, and it has been a challenging problem in the theory of stochastic dynamics and reliability analysis. In spite of the enormous amount of attention the problem has received, there is no procedure available for its general solution, especially for engineering problems of interest where the complexity of the system is large and the failure probability is small.
The application of simulation methods to solving the first excursion problem is investigated in this dissertation, with the objective of assessing the probabilistic performance of structures subjected to uncertain earthquake excitations modeled by stochastic processes. From a simulation perspective, the major difficulty in the first excursion problem comes from the large number of uncertain parameters often encountered in the stochastic description of the excitation. Existing simulation tools are examined, with special regard to their applicability in problems with a large number of uncertain parameters. Two efficient simulation methods are developed to solve the first excursion problem. The first method is developed specifically for linear dynamical systems, and it is found to be extremely efficient compared to existing techniques. The second method is more robust to the type of problem, and it is applicable to general dynamical systems. It is efficient for estimating small failure probabilities because the computational effort grows at a much slower rate with decreasing failure probability than standard Monte Carlo simulation. The simulation methods are applied to assess the probabilistic performance of structures subjected to uncertain earthquake excitation. Failure analysis is also carried out using the samples generated during simulation, which provide insight into the probable scenarios that will occur given that a structure fails.
Resumo:
This thesis was a step forward in developing probabilistic assessment of power system response to faults subject to intermittent generation by renewable energy. It has investigated the wind power fluctuation effect on power system stability, and the developed fast estimation process has demonstrated the feasibility for real-time implementation. A better balance between power network security and efficiency can be achieved based on this research outcome.
Resumo:
The study focuses on probabilistic assessment of the internal seismic stability of reinforced soil structures (RSS) subjected to earthquake loading in the framework of the pseudo-dynamic method. In the literature, the pseudo-static approach has been used to compute reliability indices against the tension and pullout failure modes, and the real dynamic nature of earthquake accelerations cannot be considered. The work presented in this paper makes use of the horizontal and vertical sinusoidal accelerations, amplification of vibrations, shear wave and primary wave velocities and time period. This approach is applied to quantify the influence of the backfill properties, geosynthetic reinforcement and characteristics of earthquake ground motions on reliability indices in relation to the tension and pullout failure modes. Seismic reliability indices at different levels of geosynthetic layers are determined for different magnitudes of seismic acceleration, soil amplification, shear wave and primary wave velocities. The results are compared with the pseudo-static method, and the significance of the present methodology for designing reinforced soil structures is discussed.
Resumo:
This paper demonstrates the procedures for probabilistic assessment of a pesticide fate and transport model, PCPF-1, to elucidate the modeling uncertainty using the Monte Carlo technique. Sensitivity analyses are performed to investigate the influence of herbicide characteristics and related soil properties on model outputs using four popular rice herbicides: mefenacet, pretilachlor, bensulfuron-methyl and imazosulfuron. Uncertainty quantification showed that the simulated concentrations in paddy water varied more than those of paddy soil. This tendency decreased as the simulation proceeded to a later period but remained important for herbicides having either high solubility or a high 1st-order dissolution rate. The sensitivity analysis indicated that PCPF-1 parameters requiring careful determination are primarily those involve with herbicide adsorption (the organic carbon content, the bulk density and the volumetric saturated water content), secondary parameters related with herbicide mass distribution between paddy water and soil (1st-order desorption and dissolution rates) and lastly, those involving herbicide degradations. © Pesticide Science Society of Japan.
Resumo:
Introdução: Áreas contaminadas por agentes químicos perigosos em regiões urbanas representam riscos importantes à saúde humana e ao ambiente. Vila Carioca, localizada na cidade de São Paulo, é uma área contaminada por pesticidas organoclorados considerada crítica, pela magnitude da contaminação, pela presença de pessoas residentes e pela complexidade de fontes da contaminação. Vários estudos de riscos já foram realizados por uma das empresas contaminadoras, no entanto, ainda há muita incerteza e controvérsias sobre os riscos à saúde da população. Objetivo: Avaliar o incremento de risco de câncer no tempo de vida para população exposta por meio de uma avaliação probabilística. Método: Foram utilizados dados secundários das contaminações obtidos nos estudos de riscos efetuados pela empresa produtora de pesticidas organoclorados e também em documentos oficiais dos órgãos de saúde e meio ambiente do Estado de São Paulo, resultantes do monitoramento da água e do solo na área residencial no período de 1997 a 2012, para 335 substâncias. Foram selecionadas substâncias carcinogênicas presentes na água subterrânea e solo com melhor conjunto de dados. Para a avaliação probabilística foi empregado o método de simulação de Monte Carlo, por meio do software comercial ModelRisk. Foram utilizados os métodos recomendados pela United States Environmental Protection Agency para a avaliação de risco de exposição dérmica e de incremento de riscos de câncer para substâncias mutagênicas. Foram consideradas a ingestão de água e solo, e contato dérmico com água. Resultados: O incremento de risco de câncer no tempo de vida (IRLT) foi de 4,7x10-3 e 4,1x10-2 para o percentil 50% e 95%, respectivamente. As rotas de exposição mais importantes foram ingestão e contato dérmico com a água subterrânea, seguido da ingestão de solo. O grupo etário que apresentou maior risco foi o das crianças de 0 a 2 anos de idade. Conclusão: Os riscos estimados são superiores aos valores considerados toleráveis. A avaliação realizada foi conservativa, mas ressalta-se que a restrição do uso da água subterrânea deve ser mantida e que a população deve ser devidamente informada dos riscos envolvidos na área, em especial, relacionados ao solo contaminado
Resumo:
The conventional Cornell's source-based approach of probabilistic seismic-hazard assessment (PSHA) has been employed all around the world, whilst many studies often rely on the use of computer packages such as FRISK (McGuire FRISK-a computer program for seismic risk analysis. Open-File Report 78-1007, United States Geological Survey, Department of Interior, Washington 1978) and SEISRISK III (Bender and Perkins SEISRISK III-a computer program for seismic hazard estimation, Bulletin 1772. United States Geological Survey, Department of Interior, Washington 1987). A ``black-box'' syndrome may be resulted if the user of the software does not have another simple and robust PSHA method that can be used to make comparisons. An alternative method for PSHA, namely direct amplitude-based (DAB) approach, has been developed as a heuristic and efficient method enabling users to undertake their own sanity checks on outputs from computer packages. This paper experiments the application of the DAB approach for three cities in China, Iran, and India, respectively, and compares with documented results computed by the source-based approach. Several insights regarding the procedure of conducting PSHA have also been obtained, which could be useful for future seismic-hazard studies.