992 resultados para Probabilistic Finite Automata
Resumo:
The problem of finite automata minimization is important for software and hardware designing. Different types of automata are used for modeling systems or machines with finite number of states. The limitation of number of states gives savings in resources and time. In this article we show specific type of probabilistic automata: the reactive probabilistic finite automata with accepting states (in brief the reactive probabilistic automata), and definitions of languages accepted by it. We present definition of bisimulation relation for automata's states and define relation of indistinguishableness of automata states, on base of which we could effectuate automata minimization. Next we present detailed algorithm reactive probabilistic automata’s minimization with determination of its complexity and analyse example solved with help of this algorithm.
Resumo:
We consider systems of equations of the form where A is the underlying alphabet, the Xi are variables, the Pi,a are boolean functions in the variables Xi, and each δi is either the empty word or the empty set. The symbols υ and denote concatenation and union of languages over A. We show that any such system has a unique solution which, moreover, is regular. These equations correspond to a type of automation, called boolean automation, which is a generalization of a nondeterministic automation. The equations are then used to determine the language accepted by a sequential network; they are obtainable directly from the network.
Resumo:
One of the most important problems in the theory of cellular automata (CA) is determining the proportion of cells in a specific state after a given number of time iterations. We approach this problem using patterns in preimage sets - that is, the set of blocks which iterate to the desired output. This allows us to construct a response curve - a relationship between the proportion of cells in state 1 after niterations as a function of the initial proportion. We derive response curve formulae for many two-dimensional deterministic CA rules with L-neighbourhood. For all remaining rules, we find experimental response curves. We also use preimage sets to classify surjective rules. In the last part of the thesis, we consider a special class of one-dimensional probabilistic CA rules. We find response surface formula for these rules and experimental response surfaces for all remaining rules.
Resumo:
Vita.
Resumo:
Issued also as thesis, University of Illinois.
Resumo:
Vita.
Resumo:
"AD735159."
The transformational implementation of JSD process specifications via finite automata representation
Resumo:
Conventional structured methods of software engineering are often based on the use of functional decomposition coupled with the Waterfall development process model. This approach is argued to be inadequate for coping with the evolutionary nature of large software systems. Alternative development paradigms, including the operational paradigm and the transformational paradigm, have been proposed to address the inadequacies of this conventional view of software developement, and these are reviewed. JSD is presented as an example of an operational approach to software engineering, and is contrasted with other well documented examples. The thesis shows how aspects of JSD can be characterised with reference to formal language theory and automata theory. In particular, it is noted that Jackson structure diagrams are equivalent to regular expressions and can be thought of as specifying corresponding finite automata. The thesis discusses the automatic transformation of structure diagrams into finite automata using an algorithm adapted from compiler theory, and then extends the technique to deal with areas of JSD which are not strictly formalisable in terms of regular languages. In particular, an elegant and novel method for dealing with so called recognition (or parsing) difficulties is described,. Various applications of the extended technique are described. They include a new method of automatically implementing the dismemberment transformation; an efficient way of implementing inversion in languages lacking a goto-statement; and a new in-the-large implementation strategy.
Resumo:
Since the 1950s, the theory of deterministic and nondeterministic finite automata (DFAs and NFAs, respectively) has been a cornerstone of theoretical computer science. In this dissertation, our main object of study is minimal NFAs. In contrast with minimal DFAs, minimal NFAs are computationally challenging: first, there can be more than one minimal NFA recognizing a given language; second, the problem of converting an NFA to a minimal equivalent NFA is NP-hard, even for NFAs over a unary alphabet. Our study is based on the development of two main theories, inductive bases and partials, which in combination form the foundation for an incremental algorithm, ibas, to find minimal NFAs. An inductive basis is a collection of languages with the property that it can generate (through union) each of the left quotients of its elements. We prove a fundamental characterization theorem which says that a language can be recognized by an n-state NFA if and only if it can be generated by an n-element inductive basis. A partial is an incompletely-specified language. We say that an NFA recognizes a partial if its language extends the partial, meaning that the NFA’s behavior is unconstrained on unspecified strings; it follows that a minimal NFA for a partial is also minimal for its language. We therefore direct our attention to minimal NFAs recognizing a given partial. Combining inductive bases and partials, we generalize our characterization theorem, showing that a partial can be recognized by an n-state NFA if and only if it can be generated by an n-element partial inductive basis. We apply our theory to develop and implement ibas, an incremental algorithm that finds minimal partial inductive bases generating a given partial. In the case of unary languages, ibas can often find minimal NFAs of up to 10 states in about an hour of computing time; with brute-force search this would require many trillions of years.
Resumo:
Since the 1950s, the theory of deterministic and nondeterministic finite automata (DFAs and NFAs, respectively) has been a cornerstone of theoretical computer science. In this dissertation, our main object of study is minimal NFAs. In contrast with minimal DFAs, minimal NFAs are computationally challenging: first, there can be more than one minimal NFA recognizing a given language; second, the problem of converting an NFA to a minimal equivalent NFA is NP-hard, even for NFAs over a unary alphabet. Our study is based on the development of two main theories, inductive bases and partials, which in combination form the foundation for an incremental algorithm, ibas, to find minimal NFAs. An inductive basis is a collection of languages with the property that it can generate (through union) each of the left quotients of its elements. We prove a fundamental characterization theorem which says that a language can be recognized by an n-state NFA if and only if it can be generated by an n-element inductive basis. A partial is an incompletely-specified language. We say that an NFA recognizes a partial if its language extends the partial, meaning that the NFA's behavior is unconstrained on unspecified strings; it follows that a minimal NFA for a partial is also minimal for its language. We therefore direct our attention to minimal NFAs recognizing a given partial. Combining inductive bases and partials, we generalize our characterization theorem, showing that a partial can be recognized by an n-state NFA if and only if it can be generated by an n-element partial inductive basis. We apply our theory to develop and implement ibas, an incremental algorithm that finds minimal partial inductive bases generating a given partial. In the case of unary languages, ibas can often find minimal NFAs of up to 10 states in about an hour of computing time; with brute-force search this would require many trillions of years.
Resumo:
We propose a method for detecting and analyzing the so-called replay attacks in intrusion detection systems, when an intruder contributes a small amount of hostile actions to a recorded session of a legitimate user or process, and replays this session back to the system. The proposed approach can be applied if an automata-based model is used to describe behavior of active entities in a computer system.