949 resultados para Prisoners, Transportation of
Resumo:
Dynamical systems theory in this work is used as a theoretical language and tool to design a distributed control architecture for a team of three robots that must transport a large object and simultaneously avoid collisions with either static or dynamic obstacles. The robots have no prior knowledge of the environment. The dynamics of behavior is defined over a state space of behavior variables, heading direction and path velocity. Task constraints are modeled as attractors (i.e. asymptotic stable states) of the behavioral dynamics. For each robot, these attractors are combined into a vector field that governs the behavior. By design the parameters are tuned so that the behavioral variables are always very close to the corresponding attractors. Thus the behavior of each robot is controlled by a time series of asymptotical stable states. Computer simulations support the validity of the dynamical model architecture.
Resumo:
In this paper dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for a team of two robots that must transport a large object and simultaneously avoid collisions with obstacles (either static or dynamic). This work extends the previous work with two robots (see [1] and [5]). However here we demonstrate that it’s possible to simplify the architecture presented in [1] and [5] and reach an equally stable global behavior. The robots have no prior knowledge of the environment. The dynamics of behavior is defined over a state space of behavior variables, heading direction and path velocity. Task constrains are modeled as attractors (i.e. asymptotic stable states) of a behavioral dynamics. For each robot, these attractors are combined into a vector field that governs the behavior. By design the parameters are tuned so that the behavioral variables are always very close to the corresponding attractors. Thus the behavior of each robot is controlled by a time series of asymptotic stable states. Computer simulations support the validity of the dynamical model architecture.
Resumo:
This study is made as a part of the Chembaltic (Risks of Maritime Transportation of Chemicals in Baltic Sea) project which gathers information on the chemicals transported in the Baltic Sea. The purpose of this study is to provide an overview of handling volumes of liquid bulk chemicals (including liquefied gases) in the Baltic Sea ports and to find out what the most transported liquid bulk chemicals in the Baltic Sea are. Oil and oil products are also viewed in this study but only in a general level. Oils and oil products may also include chemical-related substances (e.g. certain bio-fuels which belong to MARPOL annex II category) in some cargo statistics. Chemicals in packaged form are excluded from the study. Most of the facts about the transport volumes of chemicals presented in this study are based on secondary written sources of Scandinavian, Russian, Baltic and international origin. Furthermore, statistical sources, academic journals, periodicals, newspapers and in later years also different homepages on the Internet have been used as sources of information. Chemical handling volumes in Finnish ports were examined in more detail by using a nationwide vessel traffic system called PortNet. Many previous studies have shown that the Baltic Sea ports are annually handling more than 11 million tonnes of liquid chemicals transported in bulk. Based on this study, it appears that the number may be even higher. The liquid bulk chemicals account for approximately 4 % of the total amount of liquid bulk cargoes handled in the Baltic Sea ports. Most of the liquid bulk chemicals are handled in Finnish and Swedish ports and their proportion of all liquid chemicals handled in the Baltic Sea is altogether over 50 %. The most handled chemicals in the Baltic Sea ports are methanol, sodium hydroxide solution, ammonia, sulphuric and phosphoric acid, pentanes, aromatic free solvents, xylenes, methyl tert-butyl ether (MTBE) and ethanol and ethanol solutions. All of these chemicals are handled at least hundred thousand tonnes or some of them even over 1 million tonnes per year, but since chemical-specific data from all the Baltic Sea countries is not available, the exact tonnages could not be calculated in this study. In addition to these above-mentioned chemicals, there are also other high volume chemicals handled in the Baltic Sea ports (e.g. ethylene, propane and butane) but exact tonnes are missing. Furthermore, high amounts of liquid fertilisers, such as solution of urea and ammonium nitrate in water, are transported in the Baltic Sea. The results of the study can be considered indicative. Updated information about transported chemicals in the Baltic Sea is the first step in the risk assessment of the chemicals. The chemical-specific transportation data help to target hazard or e.g. grounding/collision risk evaluations to chemicals that are handled most or have significant environmental hazard potential. Data gathered in this study will be used as background information in later stages of the Chembaltic project when the risks of the chemicals transported in the Baltic Sea are assessed to highlight the chemicals that require special attention from an environmental point of view in potential marine accident situations in the Baltic Sea area.
Resumo:
Transport of live aquatic organisms which is more than a century old, perhaps started in the 1870's (Norris et al, 1960). Live fish transportation is an essential practice in aquaculture particularly in rural areas of developing countries representing the only means of supplying fry to small scale aqua culturists (Taylor and Ross, 1988). Very often, large numbers of fry, fingerlings, juveniles and adult fish are being transported from the hatchery to fish farms, fish farms to market, processors and consumers. Live fish command large economic importance in the fresh fish market than dead and iced fish. Medina Pizzali (2001) observed that live fish in the Kolkata market was usually sold at higher prices than dead fish and most consumers were prepared to pay premium prices for live fish, which is considered as the best guarantee of freshness, quality, and intrinsic characteristics of its flesh (better texture and delicate flavour) in comparison with fresh/chilled seafood. Various government and private agencies undertake transport of live fish for commercial live fish market or for artificial propagation of game
Resumo:
The objective of this experiment was to test the efficacy of a probiotic (Efinol (R) L) during transportation of marbled hatchetfish, Carnegiella strigata. Wild specimens were captured from a small stream and transported for 24 h in plastic fish boxes with a probiotic (10 mg L-1) and probiotic-free water. The boxes were sampled at 3. 12 and 24 h of transport. At the end of the experiment, the survival rate was close to.100%) in both treatments. Dissolved oxygen diminished with time in both treatments, but the probiotic group had significantly higher levels. Conductivity. pH and ammonia increased significantly during the transport. demonstrating higher levels in the probiotic-free group. Fish from both treatments presented very high net Na+ and K+ effluxes after 3 h of transport. At 24 h, net K+ effluxes in fish of the probiotic treatment reached values close to zero and a significantly lower Na+ efflux was observed. Cortisol levels in both treatments at 3 and 12 h were significantly higher than that in control samples. Higher body cortisol levels were observed in the probiotic-frec group than that in the probiotic group at 3 and 12 h. The results demonstrate that addition of a probiotic during fish transport improves water quality and leads to fish presenting a lower stress response intensity.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study verified the effects of CaSO4 on physiological responses of the tropical fish matrinxãBrycon amazonicus(200.2 ± 51.1 g) in water containing CaSO4 after a 4-h transportation at concentrations of: 0, 75, 150, and 300 mg L-1. Blood samples were collected prior to transportation (initial levels), immediately after packaging, at arrival, and 24 h and 96 h after transportation (recovery). Cortisol levels increased after ackaging (118.2 ± 14.2 ng ml-1), and decreased slightly after transportation in water containing CaSO4 (106.8 ± 14.1), but remained higher than initial levels (21.0 ± 2.6 ng ml)1). Fish kept at 150 mg L-1 CaSO4 reached the pre-transportation levels at 24 h of recovery. Blood glucose increased after transportation in all treatments (8.2 ± 0.2 mmol L-1) and declined after full recovery to values below initial levels (4.8 ± 0.1 mmol L-1). Chloride levels did not change in CaSO4 treatments; serum sodium concentrations decreased after packaging and after transportation. Serum calcium levels did not differ among treatments, but decreased after packaging and increased at 96 h of recovery. Hematocrit and the number of red blood cells were higher in all treatments after packaging and arrival, except in fish exposed to 300 mg L-1 CaSO4. Mean corpuscular volume increased in 75 mg L-1 CaSO4, which reached the higher VCM after transportation. Hemoglobin levels increased only after transportation, regardless of calcium sulfate levels. Handling before transportation and transportation itself were both stressful to fish; calcium sulfate at concentrations tested in the present work had a moderate influence in the reduction of stress responses. © 2009 Blackwell Verlag, Berlin.
Resumo:
Cover title.
Resumo:
Mode of access: Internet.