998 resultados para Presynaptic protein
Resumo:
Long-term potentiation (LTP) is an increase in synaptic responsiveness thought to be involved in mammalian learning and memory. The localization (presynaptic and/or postsynaptic) of changes underlying LTP has been difficult to resolve with current electrophysiological techniques. Using a biochemical approach, we have addressed this issue and attempted to identify specific molecular mechanisms that may underlie LTP. We utilized a novel multiple-electrode stimulator to produce LTP in a substantial portion of the synapses in a hippocampal CA1 minislice and tested the effects of such stimulation on the presynaptic protein synapsin I. LTP-inducing stimulation produced a long-lasting 6-fold increase in the phosphorylation of synapsin I at its Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) sites without affecting synapsin I levels. This effect was fully blocked by either the N-methyl-d-aspartate receptor antagonist d(−)-2-amino-5-phosphonopentanoic acid (APV) or the CaM kinase II inhibitor KN-62. Our results indicate that LTP expression is accompanied by persistent changes in presynaptic phosphorylation, and specifically that presynaptic CaM kinase II activity and synapsin I phosphorylation may be involved in LTP expression.
Resumo:
NACP, a 140-amino acid presynaptic protein, is the precursor of NAC [the non-amyloid beta/A4 protein (A beta) component of Alzheimer disease (AD) amyloid], a peptide isolated from and immunologically localized to brain amyloid of patients afflicted with AD. NACP produced in Escherichia coli bound to A beta peptides, the major component of AD amyloid. NACP bound to A beta 1-38 and A beta 25-35 immobilized on nitrocellulose but did not bind to A beta 1-28 on the filter under the same conditions. NACP binding to A beta 1-38 was abolished by addition of A beta 25-35 but not by A beta 1-28, suggesting that the hydrophobic region of the A beta peptide is critical to this binding. NACP-112, a shorter splice variant of NACP containing the NAC sequence, bound to A beta, but NACP delta, a deletion mutant of NACP lacking the NAC domain, did not bind A beta 1-38. Furthermore, binding between NACP-112 and A beta 1-38 was decreased by addition of peptide Y, a peptide that covers the last 15 residues of NAC. In an aqueous solution, A beta 1-38 aggregation was observed when NACP was also present in an incubation mixture at a ratio of 1:125 (NACP/A beta), whereas A beta 1-38 alone or NACP alone did not aggregate under the same conditions, suggesting that the formation of a complex between A beta and NACP may promote aggregation of A beta. Thus, NACP can bind A beta peptides through the specific sequence and can promote A beta aggregation, raising the possibility that NACP may play a role in the development of AD amyloid.
Resumo:
Enhanced expression of the presynaptic protein synapsin has been correlated with certain forms of long-term plasticity and learning and memory. However, the regulation and requirement for enhanced synapsin expression in long-term memory remains unknown. In the present study the technical advantages of the marine mollusc Aplysia were exploited in order to address this issue. In Aplysia, learning-induced enhancement in synaptic strength is modulated by serotonin (5-HT) and treatment with 5-HT in vitro of the sensorimotor synapse induces long-term facilitation (LTF) of synaptic transmission, which lasts for days, as well as the formation of new connections between the sensory and motor neuron. Results from immunofluorescence analysis indicated that 5-HT treatment upregulates synapsin protein levels within sensory neuron varicosities, the presumed site of neurotransmitter release. To investigate the mechanisms underlying increased synapsin expression, the promoter region of the Aplysia synapsin gene was cloned and a cAMP response element (CRE) was identified, raising the possibility that the transcriptional activator cAMP response element-binding protein-1 (CREB1) mediates the 5-HT-induced regulation of synapsin. Results from Chromatin Immunoprecipitation (ChIP) assays indicated that 5-HT treatment enhanced association of CREB1 surrounding the CRE site in the synapsin promoter and led to increased acetylation of histones H3 and H4 and decreased association of histone deacetylase 5 surrounding the CRE site in the synapsin promoter, a sign of transcriptional activation. In addition, sensory neurons injected with an enhanced green fluorescent protein (EGFP) reporter vector driven by the synapsin promoter exhibited a significant increase in EGFP expression following treatment with 5-HT. These results suggest that synapsin expression is regulated by 5-HT in part through transcriptional activation of the synapsin gene and through CREB1 association with the synapsin promoter. Furthermore, RNA interference that blocks 5-HT-induced elevation of synapsin expression also blocked long-term synaptic facilitation. These results indicate that 5-HT-induced regulation of synapsin is necessary for LTF and that synapsin is part of the cascade of synaptic events involved in the consolidation of memory.
Resumo:
A pathological feature of Alzheimer's disease (AD) is an area-specific neuronal loss that may be caused by excitotoxicity-related synaptic dysfunction. Relative expression levels of synaptopbysin, dynamin I, complexins I and II, N-cadherin, and alpha CaMKII were analysed in human brain tissue from AD cases and controls in hippocampus, and inferior temporal and occipital cortices. Synaptophysin and dynamin I are presynaptic terminal proteins not specific to any neurotransmitter system whereas complexin II, N-cadherin, and alpha CaMKII are specific for excitatory synapses. Complexin I is a presynaptic protein localised to inhibitory synapses. There were no significant differences in synaptophysin, dynamin I, N-cadherin, or alpha CaMKII protein levels between AD cases and controls. The complexin proteins were both markedly lower in AD cases than in controls (P < 0.01). Cases were also categorised by APOE genotype. Averaged across areas there was a 36% lowering of presynaptic proteins in AD cases carrying at least one epsilon 4 allele compared with in AD cases lacking the epsilon 4 allele. We infer that synaptic protein level is not indicative of neuronal loss, but the synaptic dysfunction may result from the marked relative loss of the complexins in AD, and lower levels of presynaptic proteins in AD cases with the APOE epsilon 4 allele. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In the presence of ATP, recA protein forms a presynaptic complex with single-stranded DNA that is an obligatory intermediate in homologous pairing. Presynaptic complexes of recA protein and circular single strands that are active in forming joint molecules can be isolated by gel filtration. These isolated active complexes are nucleoprotein filaments with the following characteristics: (i) a contour length that is at least 1.5 times that of the corresponding duplex DNA molecule, (ii) an ordered structure visualized by negative staining as a striated filament with a repeat distance of 9.0 nm and a width of 9.3 nm, (iii) approximately 8 molecules of recA protein and 20 nucleotide residues per striation. The widened spacing between bases in the nucleoprotein filament means that the initial matching of complementary sequences must involve intertwining of the filament and duplex DNA, unwinding of the latter, or some combination of both to equalize the spacing between nascent base pairs. These experiments support the concept that recA protein first forms a filament with single-stranded DNA, which in turn binds to duplex DNA to mediate both homologous pairing and subsequent strand exchange.
Resumo:
Throughout the central nervous system a dominant form of inhibition of neurotransmitter release from presynaptic terminals is mediated by G-protein-coupled receptors (GPCRs). Neurotransmitter release is typically induced by action potentials (APs), but can also occur spontaneously. Presynaptic inhibition by GPCRs has been associated with modulation of voltage-dependent ion channels. However, electrophysiological recordings of spontaneous, AP-independent (so-called ‘miniature’) postsynaptic events reveal an additional, important form of GPCR-mediated presynaptic inhibition, distinct from effects on ionic conductances and consistent with a direct action on the vesicle release machinery. Recent studies suggest that such miniature events might be of physiological relevance not only in signalling but also in development. In the cerebellum, neurotransmitter release onto Purkinje cells occurs by AP-dependent and AP-independent pathways. Here, I focus on inhibitory synapses between interneurons and Purkinje cells, which are subject to strong, identifiable regulation by endogenous GPCR agonists, to consider mechanisms of GPCR-mediated presynaptic inhibition.
Resumo:
The activation of presynaptic G protein-coupled receptors (GPCRs) is widely reported to inhibit transmitter release; however, the lack of accessibility of many presynaptic terminals has limited direct analysis of signalling mediators. We studied GPCR-mediated inhibition of fast cholinergic transmission between superior cervical ganglion neurones (SCGNs) in culture. The adrenoceptor agonist noradrenaline (NA) caused a dose-related reduction in evoked excitatory postsynaptic potentials (EPSPs). NA-induced EPSP decrease was accompanied by effects on the presynaptic action potential (AP), reducing AP duration and amplitude of the after-hyperpolarization (AHP), without affecting the pre- and postsynaptic membrane potential. All effects of NA were blocked by yohimbine and synaptic transmission was reduced by clonidine, consistent with an action at presynaptic alpha 2-adrenoceptors. NA-induced inhibition of transmission was sensitive to pre-incubation of SCGNs with pertussis toxin (PTX), implicating the involvement of G alpha(i)/(o)beta y subunits. Expression of G alpha transducin, an agent which sequesters G protein beta gamma (G beta y) subunits, in the presynaptic neurone caused a time-dependent attenuation of NA-induced inhibition. Injection of purified G beta gamma subunits into the presynaptic neurone inhibited transmission, and also reduced the AHP amplitude. Furthermore, NA-induced inhibition was occluded by pre-injection of G beta gamma subunits. The Ca2+ channel blocker Cd2+ mimicked NA effects on transmitter release. Cd2+, NA and G beta gamma subunits also inhibited somatic Ca2+ current. In contrast to effects on AP-evoked transmitter release, NA had no clear action on AP-independent EPSPs induced by hypertonic solutions. These results demonstrate that G beta gamma subunits functionally mediate inhibition of transmitter release by alpha 2-adrenoceptors and represent important regulators of synaptic transmission at mammalian presynaptic terminals.
Resumo:
A variety of GTP-binding protein (G protein)-coupled receptors are expressed at the nerve terminals of central synapses and play modulatory roles in transmitter release. At the calyx of Held, a rat auditory brainstem synapse, activation of presynaptic γ-aminobutyric acid type B receptors (GABAB receptors) or metabotropic glutamate receptors inhibits presynaptic P/Q-type Ca2+ channel currents via activation of G proteins, thereby attenuating transmitter release. To identify the heterotrimeric G protein subunits involved in this presynaptic inhibition, we loaded G protein βγ subunits (Gβγ) directly into the calyceal nerve terminal through whole-cell patch pipettes. Gβγ slowed the activation of presynaptic Ca2+ currents (IpCa) and attenuated its amplitude in a manner similar to the externally applied baclofen, a GABAB receptor agonist. The effects of both Gβγ and baclofen were relieved after strong depolarization of the nerve terminal. In addition, Gβγ partially occluded the inhibitory effect of baclofen on IpCa. In contrast, guanosine 5′-O-(3-thiotriphosphate)-bound Goα loaded into the calyx had no effect. Immunocytochemical examination revealed that the subtype of G proteins Go, but not the Gi, subtype, is expressed in the calyceal nerve terminal. These results suggest that presynaptic inhibition mediated by G protein-coupled receptors occurs primarily by means of the direct interaction of Go βγ subunits with presynaptic Ca2+ channels.
Resumo:
Eukaryotic homologs of Escherichia coli Rec-A protein have been shown to form nucleoprotein filaments with single-stranded DNA that recognize homologous sequences in duplex DNA. Several recent reports in four widely diverse species have demonstrated the association of RecA homologs with meiotic prophase chromatin. The current immunocytological study on mouse spermatocytes and oocytes shows that a eukaryotic homolog, Rad5l, associates with a subset of chromatin sites as early as premeiotic S phase, hours before either the appearance of precursors of synaptonemal complexes or the initiation of synapsis. When homologous chromosomes do begin to pair, the Rad5l-associated sequences are sites of initial contact between homologues and of localized DNA synthesis. Distribution of Rad5l foci on the chromatin of fully synapsed bivalents at early pachynema corresponds to an R-band pattern of mitotic chromosomes. R-bands are known to be preferred sites of both synaptic initiation and recombination. The time course of appearance of Rad51 association with chromatin, its distribution, and its interaction with other Rad5l-associated sequences suggests that it plays an important role preselection of sequences and synaptic initiation.
Resumo:
Homologous recombination is needed for meiotic chromosome segregation, genome maintenance, and tumor suppression. RAD51AP1 (RAD51 associated protein 1) has been shown to interact with and enhance the recombinase activity of RAD51. Accordingly, genetic ablation of RAD51AP1 leads to enhanced sensitivity to and also chromosome aberrations upon DNA damage, demonstrating a role for RAD51AP1 in mitotic homologous recombination. Here we show physical association of RAD51AP1 with the meiosis-specific recombinase DMC1 and a stimulatory effect of RAD51AP1 on the DMC1-mediated D-loop reaction. Mechanistic studies have revealed that RAD51AP1 enhances the ability of the DMC1 presynaptic filament to capture the duplex-DNA partner and to assemble the synaptic complex, in which the recombining DNA strands are homologously aligned. We also provide evidence that functional cooperation is dependent on complex formation between DMC1 and RAD51AP1 and that distinct epitopes in RAD51AP1 mediate interactions with RAD51 and DMC1. Finally, we show that RAD51AP1 is expressed in mouse testes, and that RAD51AP1 foci colocalize with a subset of DMC1 foci in spermatocytes. These results suggest that RAD51AP1 also serves an important role in meiotic homologous recombination.
Resumo:
The search for homologous sequences promoted by RecA protein in vitro involves a presynaptic filament and naked duplex DNA, the multiple contacts of which produce nucleoprotein networks or coaggregates. The single-stranded DNA within the presynaptic filaments, however, is extended to an axial spacing 1.5 times that of B-form DNA. To investigate this paradoxical difference between the spacing of bases in the RecA presynaptic filament versus the target duplex DNA, we explored the effect of heterologous contacts on the conformation of DNA, and vice versa. In the presence of wheat germ topoisomerase I, RecA presynaptic filaments induced a rapid, limited reduction in the linking number of heterologous circular duplex DNA. This limited unwinding of heterologous duplex DNA, termed heterologous unwinding, was detected within 30 seconds and reached a steady state within a few minutes. Presynaptic filaments that were formed in the presence of ATP?S and separated from free RecA protein by gel filtration also generated a ladder of topoisomers upon incubation with relaxed duplex DNA and topoisomerase. The inhibition of heterologous contacts by 60 mImage -NaCl or 5 mImage -ADP resulted in a corresponding decrease in heterologous unwinding. In reciprocal fashion, the stability or number of heterologous contacts with presynaptic filaments was inversely related to the linking number of circular duplex DNA. These observations show that heterologous contacts with the presynaptic filament cause a limited unwinding of the duplex DNA, and conversely that the ability of the DNA to unwind stabilizes transient heterologous contacts.
Resumo:
Previous studies in Caenorhabditis elegans showed that RPM-1 (Regulator of Presynaptic Morphology-1) regulates axon termination and synapse formation. To understand the mechanism of how rpm-1 functions, we have used mass spectrometry to identify RPM-1 binding proteins, and have identified RAE-1 (RNA Export protein-1) as an evolutionarily conserved binding partner. We define a RAE-1 binding region in RPM-1, and show that this binding interaction is conserved and also occurs between Rae1 and the human ortholog of RPM-1 called Pam (protein associated with Myc). rae-1 loss of function causes similar axon and synapse defects, and synergizes genetically with two other RPM-1 binding proteins, GLO-4 and FSN-1. Further, we show that RAE-1 colocalizes with RPM-1 in neurons, and that rae-1 functions downstream of rpm-1. These studies establish a novel postmitotic function for rae-1 in neuronal development.
Resumo:
Abstract: Modulation of presynaptic voltage-dependent Ca+ channels is a major means of controlling neurotransmitter release. The CaV 2.2 Ca2+ channel subunit contains several inhibitory interaction sites for Gβγ subunits, including the amino terminal (NT) and I–II loop. The NT and I–II loop have also been proposed to undergo a G protein-gated inhibitory interaction, whilst the NT itself has also been proposed to suppress CaV 2 channel activity. Here, we investigate the effects of an amino terminal (CaV 2.2[45–55]) ‘NT peptide’ and a I–II loop alpha interaction domain (CaV 2.2[377–393]) ‘AID peptide’ on synaptic transmission, Ca2+ channel activity and G protein modulation in superior cervical ganglion neurones (SCGNs). Presynaptic injection of NT or AID peptide into SCGN synapses inhibited synaptic transmission and also attenuated noradrenaline-induced G protein modulation. In isolated SCGNs, NT and AID peptides reduced whole-cell Ca2+ current amplitude, modified voltage dependence of Ca2+ channel activation and attenuated noradrenaline-induced G protein modulation. Co-application of NT and AID peptide negated inhibitory actions. Together, these data favour direct peptide interaction with presynaptic Ca2+ channels, with effects on current amplitude and gating representing likely mechanisms responsible for inhibition of synaptic transmission. Mutations to residues reported as determinants of Ca2+ channel function within the NT peptide negated inhibitory effects on synaptic transmission, Ca2+ current amplitude and gating and G protein modulation. A mutation within the proposed QXXER motif for G protein modulation did not abolish inhibitory effects of the AID peptide. This study suggests that the CaV 2.2 amino terminal and I–II loop contribute molecular determinants for Ca2+ channel function; the data favour a direct interaction of peptides with Ca2+ channels to inhibit synaptic transmission and attenuate G protein modulation. Non-technical summary: Nerve cells (neurones) in the body communicate with each other by releasing chemicals (neurotransmitters) which act on proteins called receptors. An important group of receptors (called G protein coupled receptors, GPCRs) regulate the release of neurotransmitters by an action on the ion channels that let calcium into the cell. Here, we show for the first time that small peptides based on specific regions of calcium ion channels involved in GPCR signalling can themselves inhibit nerve cell communication. We show that these peptides act directly on calcium channels to make them more difficult to open and thus reduce calcium influx into native neurones. These peptides also reduce GPCR-mediated signalling. This work is important in increasing our knowledge about modulation of the calcium ion channel protein; such knowledge may help in the development of drugs to prevent signalling in pathways such as those involved in pain perception.
Resumo:
Levetiracetam (LEV) is a prominent antiepileptic drug (AED) which binds to neuronal synaptic vesicle glycoprotein 2A (SV2A) protein and has reported effects on ion channels, but retains a poorly-defined mechanism of action. Here, we investigate inhibition of voltage-dependent Ca2+ (CaV) channels as a potential mechanism by which LEV imparts effects on neuronal activity. We used electrophysiological methods to investigate the effects of LEV on cholinergic synaptic transmission and CaV channel activity in superior cervical ganglion neurons (SCGNs). In parallel, we investigated effects of the LEV ‘inactive’ R-enantiomer, UCB L060. Thus, LEV, but not UCB L060 (each 100 μM), inhibited synaptic transmission between SCGNs in long-term culture in a time-dependent manner, significantly reducing excitatory postsynaptic potentials (EPSP) following ≥30 min application. In isolated SCGNs, LEV pretreatment (≥1 h), but not acute (5 min) application, significantly inhibited whole-cell IBa amplitude. In current clamp recordings, LEV reduced the amplitude of the afterhyperpolarizing potential (AHP) in a Ca2+-dependent manner, but also increased action potential (AP) latency in a Ca2+-independent manner, suggesting further mechanisms associated with reduced excitability. Intracellular LEV application (4-5 min) caused a rapid inhibition of IBa amplitude to an extent comparable to that seen following extracellular LEV pretreatment ( ≥ 1 h). Neither pretreatment nor intracellular application of UCB L060 produced any inhibitory effects on IBa amplitude. These results identify a stereospecific intracellular pathway by which LEV inhibits presynaptic CaV channels; resultant reductions in neuronal excitability are proposed to contribute to the anticonvulsant effects of LEV.