862 resultados para Prediction of Heterogeneous Variables System
Resumo:
* This work was financially supported by RFBR-04-01-00858.
Resumo:
An application of the heterogeneous variables system prediction method to solving the time series analysis problem with respect to the sample size is considered in this work. It is created a logical-and-probabilistic correlation from the logical decision function class. Two ways is considered. When the information about event is kept safe in the process, and when it is kept safe in depending process.
Resumo:
Colloid self-assembly under external control is a new route to fabrication of advanced materials with novel microstructures and appealing functionalities. The kinetic processes of colloidal self-assembly have attracted great interests also because they are similar to many atomic level kinetic processes of materials. In the past decades, rapid technological progresses have been achieved on producing shape-anisotropic, patchy, core-shell structured particles and particles with electric/magnetic charges/dipoles, which greatly enriched the self-assembled structures. Multi-phase carrier liquids offer new route to controlling colloidal self-assembly. Therefore, heterogeneity is the essential characteristics of colloid system, while so far there still lacks a model that is able to efficiently incorporate these possible heterogeneities. This thesis is mainly devoted to development of a model and computational study on the complex colloid system through a diffuse-interface field approach (DIFA), recently developed by Wang et al. This meso-scale model is able to describe arbitrary particle shape and arbitrary charge/dipole distribution on the surface or body of particles. Within the framework of DIFA, a Gibbs-Duhem-type formula is introduced to treat Laplace pressure in multi-liquid-phase colloidal system and it obeys Young-Laplace equation. The model is thus capable to quantitatively study important capillarity related phenomena. Extensive computer simulations are performed to study the fundamental behavior of heterogeneous colloidal system. The role of Laplace pressure is revealed in determining the mechanical equilibrium of shape-anisotropic particles at fluid interfaces. In particular, it is found that the Laplace pressure plays a critical role in maintaining the stability of capillary bridges between close particles, which sheds light on a novel route to in situ firming compact but fragile colloidal microstructures via capillary bridges. Simulation results also show that competition between like-charge repulsion, dipole-dipole interaction and Brownian motion dictates the degree of aggregation of heterogeneously charged particles. Assembly and alignment of particles with magnetic dipoles under external field is studied. Finally, extended studies on the role of dipole-dipole interaction are performed for ferromagnetic and ferroelectric domain phenomena. The results reveal that the internal field generated by dipoles competes with external field to determine the dipole-domain evolution in ferroic materials.
Resumo:
Questions Soil properties have been widely shown to influence plant growth and distribution. However, the degree to which edaphic variables can improve models based on topo-climatic variables is still unclear. In this study, we tested the roles of seven edaphic variables, namely (1) pH; (2) the content of nitrogen and of (3) phosphorus; (4) silt; (5) sand; (6) clay and (7) carbon-to-nitrogen ratio, as predictors of species distribution models in an edaphically heterogeneous landscape. We also tested how the respective influence of these variables in the models is linked to different ecological and functional species characteristics. Location The Western Alps, Switzerland. Methods With four different modelling techniques, we built models for 115 plant species using topo-climatic variables alone and then topo-climatic variables plus each of the seven edaphic variables, one at a time. We evaluated the contribution of each edaphic variable by assessing the change in predictive power of the model. In a second step, we evaluated the importance of the two edaphic variables that yielded the largest increase in predictive power in one final set of models for each species. Third, we explored the change in predictive power and the importance of variables across plant functional groups. Finally, we assessed the influence of the edaphic predictors on the prediction of community composition by stacking the models for all species and comparing the predicted communities with the observed community. Results Among the set of edaphic variables studied, pH and nitrogen content showed the highest contributions to improvement of the predictive power of the models, as well as the predictions of community composition. When considering all topo-climatic and edaphic variables together, pH was the second most important variable after degree-days. The changes in model results caused by edaphic predictors were dependent on species characteristics. The predictions for the species that have a low specific leaf area, and acidophilic preferences, tolerating low soil pH and high humus content, showed the largest improvement by the addition of pH and nitrogen in the model. Conclusions pH was an important predictor variable for explaining species distribution and community composition of the mountain plants considered in our study. pH allowed more precise predictions for acidophilic species. This variable should not be neglected in the construction of species distribution models in areas with contrasting edaphic conditions.
Resumo:
The human NT2.D1 cell line was differentiated to form both a 1:2 co-culture of post-mitotic NT2 neuronal and NT2 astrocytic (NT2.N/A) cells and a pure NT2.N culture. The respective sensitivities to several test chemicals of the NT2.N/A, the NT2.N, and the NT2.D1 cells were evaluated and compared with the CCF-STTG1 astrocytoma cell line, using a combination of basal cytotoxicity and biochemical endpoints. Using the MTT assay, the basal cytotoxicity data estimated the comparative toxicities of the test chemicals (chronic neurotoxin 2,5-hexanedione, cytotoxins 2,3- and 3,4-hexanedione and acute neurotoxins tributyltin- and trimethyltin- chloride) and also provided the non-cytotoxic concentration-range for each compound. Biochemical endpoints examined over the non-cytotoxic range included assays for ATP levels, oxidative status (H2O2 and GSH levels) and caspase-3 levels as an indicator of apoptosis. although the endpoints did not demonstrate the known neurotoxicants to be consistently more toxic to the cell systems with the greatest number of neuronal properties, the NT2 astrocytes appeared to contribute positively to NT2 neuronal health following exposure to all the test chemicals. The NT2.N/A co-culture generally maintained superior ATP and GSH levels and reduced H2O2 levels in comparison with the NT2.N mono-culture. In addition, the pure NT2.N culture showed a significantly lower level of caspase-3 activation compared with the co-culture, suggesting NT2 astrocytes may be important in modulating the mode of cell death following toxic insult. Overall, these studies provide evidence that an in vitro integrated population of post-mitotic human neurons and astrocytes may offer significant relevance to the human in vivo heterogeneous nervous system, when initially screening compounds for acute neurotoxic potential.
Resumo:
Identification, prediction, and control of a system are engineering subjects, regardless of the nature of the system. Here, the temporal evolution of the number of individuals with dengue fever weekly recorded in the city of Rio de Janeiro, Brazil, during 2007, is used to identify SIS (susceptible-infective-susceptible) and SIR (susceptible-infective-removed) models formulated in terms of cellular automaton (CA). In the identification process, a genetic algorithm (GA) is utilized to find the probabilities of the state transition S -> I able of reproducing in the CA lattice the historical series of 2007. These probabilities depend on the number of infective neighbors. Time-varying and non-time-varying probabilities, three different sizes of lattices, and two kinds of coupling topology among the cells are taken into consideration. Then, these epidemiological models built by combining CA and GA are employed for predicting the cases of sick persons in 2008. Such models can be useful for forecasting and controlling the spreading of this infectious disease.
Resumo:
PREDBALB/c is a computational system that predicts peptides binding to the major histocompatibility complex-2 (H2(d)) of the BALB/c mouse, an important laboratory model organism. The predictions include the complete set of H2(d) class I ( H2-K-d, H2-L-d and H2-D-d) and class II (I-E-d and I-A(d)) molecules. The prediction system utilizes quantitative matrices, which were rigorously validated using experimentally determined binders and non-binders and also by in vivo studies using viral proteins. The prediction performance of PREDBALB/c is of very high accuracy. To our knowledge, this is the first online server for the prediction of peptides binding to a complete set of major histocompatibility complex molecules in a model organism (H2(d) haplotype). PREDBALB/c is available at http://antigen.i2r.a-star.edu.sg/predBalbc/.
Resumo:
OBJECTIVES We sought to find out whether dobutamine echocardiography (DbE) could provide independent prediction of total and cardiac mortality, incremental to clinical and angiographic variables. BACKGROUND Existing outcome studies with DbE have examined composite end points, rather than death, over a relatively short follow-up. METHODS Clinical and stress data were collected in 3,156 patients (age 63 +/- 12 years, 1,801 men) undergoing DbE. Significant stenoses (>50% diameter) were identified in 70% of 1,073 patients undergoing coronary angiography. Total and cardiac mortality were identified over nine years of follow-up (mean 3.8 +/- 1.9). Cox models were used to analyze the effect of ischemia and other variables, independent of other determinants of mortality. RESULTS The dobutamine echocardiogram was abnormal in 1,575 patients (50%). Death occurred in 716 patients (23%), 259 of whom (8%) were thought to have died from cardiac causes. Patients with normal DbE had a total mortality of 8% per year and a cardiac mortality of 1% per year over the first four years of follow-up. Ischemia and the extent of abnormal wall motion were independent predictors of cardiac death, together with age and heart failure. In sequential Cox models, the predictive power of clinical data alone (model chi-square 115) was strengthened by adding the resting left ventricular function (model chi-square 138) and the results of DbE (model chi-square 181). In the subgroup undergoing coronary angiography, the power of the model was increased to a minor degree by the addition of coronary anatomy data. CONCLUSIONS Dobutamine echocardiography is an independent predictor of death, incremental to other data. While a normal dobutamine echocardiogram predicts low risk of cardiac death ton the order of 1% per year), this risk increases with the extent of abnormal wall motion at rest and stress, (J Am Coil Cardiol 2001;37:754-60) (C) 2001 by the American College of Cardiology.
Resumo:
Stress echocardiography has been shown to improve the diagnosis of coronary artery disease in the presence of hypertension, but its value in prognostic evaluation is unclear. We sought to determine whether stress echocardiography could be used to predict mortality in 2363 patients with hypertension, who were followed for up to 10 years (mean 4.0+/-1.8) for death and revascularization. Stress echocardiograms were normal in 1483 patients (63%), 16% had resting left ventricular (LV) dysfunction alone, and 21% had ischemia. Abnormalities were confined to one territory in 489 patients (21%) and to multiple territories in 365 patients (15%). Cardiac death was less frequent among the patients able to exercise than among those undergoing dobutamine echocardiography (4% versus 7%, P<0.001). The risk of death in patients with a negative stress echocardiogram was <1% per year. Ischemia identified by stress echocardiography was an independent predictor of mortality in those able to exercise (hazard ratio 2.21, 95% confidence intervals 1.10 to 4.43, P=0.0001) as well as those undergoing dobutamine echo (hazard ratio 2.39, 95% confidence intervals 1.53 to 3.75, P=0.0001); other predictors were age, heart failure, resting LV dysfunction, and the Duke treadmill score. In stepwise models replicating the sequence of clinical evaluation, the results of stress echocardiography added prognostic power to models based on clinical and stress-testing variables. Thus, the results of stress echocardiography are an independent predictor of cardiac death in hypertensive patients with known or suspected coronary artery disease, incremental to clinical risks and exercise results.
Resumo:
Complex chemical reactions in the gas phase can be decomposed into a network of elementary (e.g., unimolecular and bimolecular) steps which may involve multiple reactant channels, multiple intermediates, and multiple products. The modeling of such reactions involves describing the molecular species and their transformation by reaction at a detailed level. Here we focus on a detailed modeling of the C(P-3)+allene (C3H4) reaction, for which molecular beam experiments and theoretical calculations have previously been performed. In our previous calculations, product branching ratios for a nonrotating isomerizing unimolecular system were predicted. We extend the previous calculations to predict absolute unimolecular rate coefficients and branching ratios using microcanonical variational transition state theory (mu-VTST) with full energy and angular momentum resolution. Our calculation of the initial capture rate is facilitated by systematic ab initio potential energy surface calculations that describe the interaction potential between carbon and allene as a function of the angle of attack. Furthermore, the chemical kinetic scheme is enhanced to explicitly treat the entrance channels in terms of a predicted overall input flux and also to allow for the possibility of redissociation via the entrance channels. Thus, the computation of total bimolecular reaction rates and partial capture rates is now possible. (C) 2002 American Institute of Physics.
Resumo:
Currently, the quality of the Indonesian national road network is inadequate due to several constraints, including overcapacity and overloaded trucks. The high deterioration rate of the road infrastructure in developing countries along with major budgetary restrictions and high growth in traffic have led to an emerging need for improving the performance of the highway maintenance system. However, the high number of intervening factors and their complex effects require advanced tools to successfully solve this problem. The high learning capabilities of Data Mining (DM) are a powerful solution to this problem. In the past, these tools have been successfully applied to solve complex and multi-dimensional problems in various scientific fields. Therefore, it is expected that DM can be used to analyze the large amount of data regarding the pavement and traffic, identify the relationship between variables, and provide information regarding the prediction of the data. In this paper, we present a new approach to predict the International Roughness Index (IRI) of pavement based on DM techniques. DM was used to analyze the initial IRI data, including age, Equivalent Single Axle Load (ESAL), crack, potholes, rutting, and long cracks. This model was developed and verified using data from an Integrated Indonesia Road Management System (IIRMS) that was measured with the National Association of Australian State Road Authorities (NAASRA) roughness meter. The results of the proposed approach are compared with the IIRMS analytical model adapted to the IRI, and the advantages of the new approach are highlighted. We show that the novel data-driven model is able to learn (with high accuracy) the complex relationships between the IRI and the contributing factors of overloaded trucks
Resumo:
OBJECTIVE. The main goal of this paper is to obtain a classification model based on feed-forward multilayer perceptrons in order to improve postpartum depression prediction during the 32 weeks after childbirth with a high sensitivity and specificity and to develop a tool to be integrated in a decision support system for clinicians. MATERIALS AND METHODS. Multilayer perceptrons were trained on data from 1397 women who had just given birth, from seven Spanish general hospitals, including clinical, environmental and genetic variables. A prospective cohort study was made just after delivery, at 8 weeks and at 32 weeks after delivery. The models were evaluated with the geometric mean of accuracies using a hold-out strategy. RESULTS. Multilayer perceptrons showed good performance (high sensitivity and specificity) as predictive models for postpartum depression. CONCLUSIONS. The use of these models in a decision support system can be clinically evaluated in future work. The analysis of the models by pruning leads to a qualitative interpretation of the influence of each variable in the interest of clinical protocols.