989 resultados para Potassium levels
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background and ObjectivesHypokalemia has been consistently associated with high mortality rate in peritoneal dialysis. However, studies investigating if hypokalemia is acting as a surrogate marker of comorbidities or has a direct effect in the risk for mortality have not been studied. Thus, the aim of this study was to analyze the effect of hypokalemia on overall and cause-specific mortality.Design, Setting, Participants and MeasurementsThis is an analysis of BRAZPD II, a nationwide prospective cohort study. All patients on PD for longer than 90 days with measured serum potassium levels were used to verify the association of hypokalemia with overall and cause-specific mortality using a propensity match score to reduce selection bias. In addition, competing risks were also taken into account for the analysis of cause-specific mortality.ResultsThere was a U-shaped relationship between time-averaged serum potassium and all-cause mortality of PD patients. Cardiovascular disease was the main cause of death in the normokalemic group with 133 events (41.8%) followed by PD-non related infections, n=105 (33.0%). Hypokalemia was associated with a 49% increased risk for CV mortality after adjustments for covariates and the presence of competing risks (SHR 1.49; CI95% 1.01-2.21). In contrast, in the group of patients with K < 3.5mEq/L, PD-non related infections were the main cause of death with 43 events (44.3%) followed by cardiovascular disease (n=36; 37.1%). For PD-non related infections the SHR was 2.19 (CI95% 1.52-3.14) while for peritonitis was SHR 1.09 (CI95% 0.47-2.49).ConclusionsHypokalemia had a significant impact on overall, cardiovascular and infectious mortality even after adjustments for competing risks. The causative nature of this association suggested by our study raises the need for intervention studies looking at the effect of potassium supplementation on clinical outcomes of PD patients.
Resumo:
Mutations in α, β, or γ subunits of the epithelial sodium channel (ENaC) can downregulate ENaC activity and cause a severe salt-losing syndrome with hyperkalemia and metabolic acidosis, designated pseudohypoaldosteronism type 1 in humans. In contrast, mice with selective inactivation of αENaC in the collecting duct (CD) maintain sodium and potassium balance, suggesting that the late distal convoluted tubule (DCT2) and/or the connecting tubule (CNT) participates in sodium homeostasis. To investigate the relative importance of ENaC-mediated sodium absorption in the CNT, we used Cre-lox technology to generate mice lacking αENaC in the aquaporin 2-expressing CNT and CD. Western blot analysis of microdissected cortical CD (CCD) and CNT revealed absence of αENaC in the CCD and weak αENaC expression in the CNT. These mice exhibited a significantly higher urinary sodium excretion, a lower urine osmolality, and an increased urine volume compared with control mice. Furthermore, serum sodium was lower and potassium levels were higher in the genetically modified mice. With dietary sodium restriction, these mice experienced significant weight loss, increased urinary sodium excretion, and hyperkalemia. Plasma aldosterone levels were significantly elevated under both standard and sodium-restricted diets. In summary, αENaC expression within the CNT/CD is crucial for sodium and potassium homeostasis and causes signs and symptoms of pseudohypoaldosteronism type 1 if missing.
Resumo:
Topiramate, which is commonly prescribed for seizure disorders and migraine prophylaxis, sometimes causes metabolic acidosis and hypokalemia. Since the effects of topiramate on acid-base balance and potassium levels have not been well explored in children, acid-base balance, anion gap and potassium were assessed in 24 patients (8 females and 16 males) aged between 4.6 and 19 years on topiramate for more than 12 months and in an age-matched control group. Plasma bicarbonate (21.7 versus 23.4 mmol/L; P<0.03), carbon dioxide pressure (39.7 versus 43.2mm Hg; P<0.05), and potassium (3.7 versus 4.0 mmol/L; P<0.03) were on the average lower and chloride (109 versus 107 mmol/L; P<0.03) higher in patients treated with topiramate than in controls. Blood pH, plasma sodium and the anion gap were similar in patients on topiramate and in controls. In patients on topiramate no significant correlation was observed between the dosage of this agent and plasma bicarbonate or potassium as well as between topiramate blood level and the mentioned electrolytes. In conclusion long-term topiramate treatment is associated with a mild, statistically significant tendency towards compensated normal anion gap metabolic acidosis and hypokalemia.
Resumo:
OBJECT: Disturbed ionic and neurotransmitter homeostasis are now recognized as probably the most important mechanisms contributing to the development of secondary brain swelling after traumatic brain injury (TBI). Evidence obtained in animal models indicates that posttraumatic neuronal excitation by excitatory amino acids leads to an increase in extracellular potassium, probably due to ion channel activation. The purpose of this study was therefore to measure dialysate potassium in severely head injured patients and to correlate these results with measurements of intracranial pressure (ICP), patient outcome, and levels of dialysate glutamate and lactate, and cerebral blood flow (CBF) to determine the role of ischemia in this posttraumatic ion dysfunction. METHODS: Eighty-five patients with severe TBI (Glasgow Coma Scale Score < 8) were treated according to an intensive ICP management-focused protocol. All patients underwent intracerebral microdialyis. Dialysate potassium levels were analyzed using flame photometry, and dialysate glutamate and dialysate lactate levels were measured using high-performance liquid chromatography and an enzyme-linked amperometric method in 72 and 84 patients, respectively. Cerebral blood flow studies (stable xenon computerized tomography scanning) were performed in 59 patients. In approximately 20% of the patients, dialysate potassium values were increased (dialysate potassium > 1.8 mM) for 3 hours or more. A mean amount of dialysate potassium greater than 2 mM throughout the entire monitoring period was associated with ICP above 30 mm Hg and fatal outcome, as were progressively rising levels of dialysate potassium. The presence of dialysate potassium correlated positively with dialysate glutamate (p < 0.0001) and lactate (p < 0.0001) levels. Dialysate potassium was significantly inversely correlated with reduced CBF (p = 0.019). CONCLUSIONS: Dialysate potassium was increased after TBI in 20% of measurements. High levels of dialysate potassium were associated with increased ICP and poor outcome. The simultaneous increase in dialysate potassium, together with dialysate glutamate and lactate, supports the concept that glutamate induces ionic flux and consequently increases ICP, which the authors speculate may be due to astrocytic swelling. Reduced CBF was also significantly correlated with increased levels of dialysate potassium. This may be due to either cell swelling or altered vasoreactivity in cerebral blood vessels caused by higher levels of potassium after trauma. Additional studies in which potassium-sensitive microelectrodes are used are needed to validate these ionic events more clearly.
Resumo:
Disturbed ionic and neurotransmitter homeostasis are now recognized to be probably the most important mechanisms contributing to the development of secondary brain swelling after traumatic brian injury (TBI). Evidence obtained from animal models indicates that posttraumatic neuronal excitation via excitatory amino acids leads to an increase in extracellular potassium, probably due to ion channel activation. The purpose of this study was therefore to measure dialysate potassium in severely head injured patients and to correlate these results with intracranial pressure (ICP), outcome, and also with the levels of dialysate glutamate, lactate, and cerebral blood flow (CBF) so as to determine the role of ischemia in this posttraumatic ionic dysfunction. Eighty-five patients with severe TBI (Glasgow Coma Scale score < 8) were treated according to an intensive ICP management-focused protocol. All patients underwent intracerebral microdialyis. Dialysate potassium levels were analyzed by flame photometry, as were dialysate glutamate and dialysate lactate levels, which were measured using high-performance liquid chromatography and an enzyme-linked amperometric method in 72 and 84 patients respectively. Cerebral blood flow studies (stable Xenon--computerized tomography scanning) were performed in 59 patients. In approximately 20% of the patients, potassium values were increased (dialysate potassium > 1.8 mmol). Mean dialysate potassium (> 2 mmol) was associated with ICP above 30 mm Hg and fatal outcome. Dialysate potassium correlated positively with dialysate glutamate (p < 0.0001) and lactate levels (p < 0.0001). Dialysate potassium was significantly inversely correlated with reduced CBF (p = 0.019). Dialysate potassium was increased after TBI in 20% of measurements. High levels of dialysate potassium were associated with increased ICP and poor outcome. The simultaneous increase of potassium, together with dialysate glutamate and lactate, supports the hypothesis that glutamate induces ionic flux and consequently increases ICP due to astrocytic swelling. Reduced CBF was also significantly correlated with increased levels of dialysate potassium. This may be due to either cell swelling or altered potassium reactivity in cerebral blood vessels after trauma.
Resumo:
The key role players of brain swelling seen after severe human head injury have only been partly determined. We used our human head injury data base to determine relationships between potassium, glutamate, lactate and cerebral blood flow (CBF). A total of 70 severely head injured patients (GCS < or = 8) were studied using intracerebral microdialysis to measure extracellular glutamate, potassium and lactate. Xenon CT was used to determine regional cerebral blood flow (rCBF). The mean +/- SEM of the r value of all patients, between potassium and glutamate, and potassium and lactate was 0.25 +/- 0.04 (p < 0.0001) and 0.17 +/- 0.06 (p = 0.006), respectively, demonstrating in both cases a positive relationship. rCBF was negatively correlated with potassium with marginal significance (r = -0.35, p = 0.08). When separated into two groups, patients with contusion had higher potassium levels than patients without contusion (1.55 +/- 0.03 mmol/l versus 1.26 +/- 0.02 mmol/l, respectively). These results in severely head injured patients confirm previous in vitro and animal studies in which relationships between potassium, glutamate, lactate and CBF were found. Potassium efflux is a major determinant of cell swelling leading to clinically significant cytotoxic edema due to increased glutamate release during reduced cerebral blood flow.
Resumo:
Hyperkalemia is an important cause of membrane depolarization in renal failure. A recent theoretical model of axonal excitability explains the effects of potassium on threshold electrotonus, but predicts changes in superexcitability in the opposite direction to those observed. To resolve this contradiction we assessed the relationship between serum potassium and motor axon excitability properties in 38 volunteers with normal potassium levels. Most threshold electrotonus measures were strongly correlated with potassium, and superexcitability decreased at higher potassium levels (P = 0.016), contrary to the existing model. Improved modelling of potassium effects was achieved by making the potassium currents obey the constant-field theory, and by making the potassium permeabilities proportional to external potassium, as has been observed in vitro. This new model also accounted well for the changes in superexcitability and other excitability measures previously reported in renal failure. These results demonstrate the importance of taking potassium levels into account when assessing axonal membrane dysfunction by excitability testing, and provide evidence that potassium currents are activated by external potassium in vivo.
Resumo:
BACKGROUND It was found that age and female gender are predisposing factors for hyponatremia in patients taking thiazides. OBJECTIVE To investigate whether a relationship exists between age and gender and serum sodium and potassium as well as the prevalence rates in a large population of patients presenting to the emergency department of a university hospital. METHODS In this retrospective analysis we gathered data on age, gender and current diuretic medication of all patients admitted to the emergency department of a large university hospital with measurement of serum sodium and potassium between January 1, 2009 and December 31, 2010. Prevalence rates of and risk factors for electrolyte disorders were calculated on the basis of these data. RESULTS A total of 20,667 patients were included in the analysis. Serum sodium levels declined significantly with increasing age while serum potassium rose, independent of diuretic medication at presentation. The prevalence rates of hyponatremia and hyperkalemia increased from 2.3% for hyponatremia in patients aged 16-21 years to 16.9% in patients aged >80 years and from 0.8% for hyperkalemia to 10.4%. In the regression analysis, age >60 years was a predictor for the presence of hyponatremia and hyperkalemia as was current use of diuretic medication. Male gender was associated with a decreased prevalence of hyponatremia and hypokalemia, while it was a predictor of hyperkalemia. CONCLUSIONS Sodium levels were lower with increasing age, independent of diuretic intake, while potassium levels were higher. We found dramatically increasing prevalences of hyponatremia and hyperkalemia with increasing age, while no such effect could be found for hypernatremia and hypokalemia.
Resumo:
The present paper deals with the physico-chemical data of 13 rainfed and drainable dry bundhs of Bhilwara District (India). All the dry bundhs studied showed a slightly alkaline pH ranging from 7.5 to 8.5. Electrical conductivity ranged from 2 to 8 millimhos/cm. Organic carbon in sediment fluctuated from 0.30 to 0.75%. Nitrogen, phosphate and potassium levels were fairly good, at 30 to 50 and 24 to 36 mg/100 g of soil respectively. Based on these data it was inferred that these dry bundhs were highly productive and suitable for freshwater fish culture.
Resumo:
通过盆栽试验 ,采用定位叶片的方法 ,进行不同钾肥用量试验 ,研究了增施钾肥对石灰性土壤上烤烟吸钾和土壤供钾的影响及提高石灰性土壤上烤烟含钾量的可能途径。结果表明 ,增施钾肥可以显著提高烟叶含钾量 ;而当施钾量达一定水平时 ,只有大幅度增加钾肥施用量 ,烟叶含钾量才显著增加 ,但对烟叶产量影响不大。施钾对烟叶含钾量的提高作用在生育后期最为显著。保证生育后期充足的钾素供应对提高烟叶含钾量可能具有重要意义
Resumo:
One mechanism for physiological adjustment of small mammals to different habitats and different seasons is by seasonal acclimatization of their osmoregulatory system. We examined the abilities of broad-toothed field mice (Apodemus mystacinus) from different ecosystems ('sub-alpine' and 'Mediterranean') to cope with salinity stress under short day (SD) and long day (W) photoperiod regimes. We compared urine volume, osmolarity, urea and electrolyte (sodium, potassium and chloride) concentrations. Significant differences were noted in the abilities of mice from the two ecosystems to deal with salinity load; in particular sub-alpine mice produced less concentrated urine than Mediterranean mice with SD- sub-alpine mice seeming to produce particularly dilute urine. Urea concentration generally decreased with increasing salinity, whereas sodium and potassium levels increased, however SD- sub-alpine mice behaved differently and appeared not to be able to excrete electrolytes as effectively as the other groups of mice. Differences observed provide an insight into the kinds of variability that are present within populations inhabiting different ecosystems, thus how populations may be able to respond to potential changes in their environment. Physiological data pertaining to adaptation to increased xeric conditions, as modelled by A. mystacinus, provides valuable information as to how other species may cope with potential climatic challenges.
Resumo:
1 Plant species differ in their capacity to influence soil organic matter, soil nutrient availability and the composition of soil microbial communities. Their influences on soil properties result in net positive or negative feedback effects, which influence plant performance and plant community composition. 2 For two grassland systems, one on a sandy soil in the Netherlands and one on a chalk soil in the United Kingdom, we investigated how individual plant species grown in monocultures changed abiotic and biotic soil conditions. Then, we determined feedback effects of these soils to plants of the same or different species. Feedback effects were analysed at the level of plant species and plant taxonomic groups (grasses vs. forbs). 3 In the sandy soils, plant species differed in their effects on soil chemical properties, in particular potassium levels, but PLFA (phospholipid fatty acid) signatures of the soil microbial community did not differ between plant species. The effects of soil chemical properties were even greater when grasses and forbs were compared, especially because potassium levels were lower in grass monocultures. 4 In the chalk soil, there were no effects of plant species on soil chemical properties, but PLFA profiles differed significantly between soils from different monocultures. PLFA profiles differed between species, rather than between grasses and forbs. 5 In the feedback experiment, all plant species in sandy soils grew less vigorously in soils conditioned by grasses than in soils conditioned by forbs. These effects correlated significantly with soil chemical properties. None of the seven plant species showed significant differences between performance in soil conditioned by the same vs. other plant species. 6 In the chalk soil, Sanguisorba minor and in particular Briza media performed best in soil collected from conspecifics, while Bromus erectus performed best in soil from heterospecifics. There was no distinctive pattern between soils collected from forb and grass monocultures, and plant performance could not be related to soil chemical properties or PLFA signatures. 7 Our study shows that mechanisms of plant-soil feedback can depend on plant species, plant taxonomic (or functional) groups and site-specific differences in abiotic and biotic soil properties. Understanding how plant species can influence their rhizosphere, and how other plant species respond to these changes, will greatly enhance our understanding of the functioning and stability of ecosystems.
Resumo:
O experimento foi conduzido em estufa telada na FCAV/Unesp Câmpus Jaboticabal-SP, durante o período de novembro de 2005 a janeiro de 2007. O estudo teve por objetivo avaliar componentes do desenvolvimento e do estado nutricional de mudas de laranjeira 'Valência', enxertada sobre citrumeleiro 'Swingle', cultivado em substrato, em função de doses de nitrogênio, fósforo e potássio. O delineamento experimental foi o inteiramente casualizado, em esquema fatorial 3³ + 1, sendo 3 fatores (nitrogênio, fósforo e potássio), 3 doses e uma testemunha (sem adubação), com 3 repetições. A unidade experimental foi constituída de uma muda de laranjeira por sacolas de 5 dm-3, contendo 2,5 kg de substrato casca de Pinus e vermiculita. Os tratamentos foram constituídos pela aplicação das seguintes doses de nutrientes em mg por dm³ de substrato: N1/2:459, N1:918 e N2:1836; P1/2:92, P1:184 e P2: 368; K1/2:438, K1:876 e K2:1752. Aos 424 dias após a semeadura, as plantas foram divididas em raízes e parte aérea para a determinação da massa da matéria seca, altura, área foliar, diâmetro do caule e conteúdo de nutrientes. As adubações com N, P e K proporcionaram maior crescimento e maior acúmulo de N, P e K na parte aérea e nas raízes das mudas de laranjeira, em substrato de casca de Pinus e vermiculita, em relação à testemunha. A dose de 459 mg dm-3 de N e as doses de P e K 184 e 876 mg dm-3, respectivamente, proporcionaram melhor crescimento da parte aérea das mudas; porém, na dose recomendada de N de 918 mg dm-3, ocorreu maior crescimento do sistema radicular.
Resumo:
O experimento foi conduzido em casa de vegetação telada na FCAV/Unesp campus Jaboticabal-SP, durante o período de novembro de 2005 a janeiro de 2007. Conduziu-se este estudo, com o objetivo de avaliar componentes do desenvolvimento e do estado nutricional de mudas de laranjeira Valência (Citrus sinensis Osbeck), enxertadas sobre limoeiro Cravo (Citrus limonia Osbeck), em função de doses de nitrogênio, fósforo e potássio. O delineamento experimental foi inteiramente casualizado, em esquema fatorial 3³ + 1, sendo 3 fatores (nitrogênio, fósforo e potássio - NPK), 3 doses e uma testemunha (sem adubação), com 3 repetições. A unidade experimental foi representada por uma muda de laranjeira por sacola com 5 dm³ com 2,5 kg de substrato casca de Pinus spp. e vermiculita. Os tratamentos foram constituídos pela metade, uma vez e duas vezes a dose padrão recomendada, de 4.590; 920 e 4.380 mg sacola-1, de N, P e K, respectivamente. As adubações com N e K foram realizadas via fertirrigações três vezes por semana e o P foi adicionado ao substrato antes do replantio das mudas. Aos 424 dias após o transplantio, as plantas foram subdivididas em raízes e parte aérea para determinação da massa da matéria seca, altura, área foliar, diâmetro do caule e conteúdo de nutrientes. A adubação com N, P e K proporcionou maior desenvolvimento e maior acúmulo desses macronutrientes na parte aérea e nas raízes das mudas de laranjeira Valência, sobre limoeiro Cravo. Houve adequado desenvolvimento das plantas com a metade da dose recomendada de N, P e K pela literatura, aproximadamente de 918, 184 e 876 mg dm-3, respectivamente.