961 resultados para Posture
Resumo:
A single subject longevity study is presented as a case study for the Medical Device Partnering Program (MDPP). The MDPP supports the development of cutting-edge medical devices and assistive technologies, through unique collaborations between researchers, industry, clinical end-users and government. The study aimed to identify what effect the innersole has on specific muscles that may influence stability and whether the innersole had any influence on gait. Three tests were conducted; a standard gait test, dynamic balance test and a standing balance test. Results from the kinematic analysis showed reduced variability in post testing results when compared to pre testing results. Reductions in muscle activation levels were also found across all tests. Further testing with a larger sample size is required to determine if these effects are due to the innersole.
Resumo:
Finite element analyses of the human body in seated postures requires digital models capable of providing accurate and precise prediction of the tissue-level response of the body in the seated posture. To achieve such models, the human anatomy must be represented with high fidelity. This information can readily be defined using medical imaging techniques such as Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). Current practices for constructing digital human models, based on the magnetic resonance (MR) images, in a lying down (supine) posture have reduced the error in the geometric representation of human anatomy relative to reconstructions based on data from cadaveric studies. Nonetheless, the significant differences between seated and supine postures in segment orientation, soft-tissue deformation and soft tissue strain create a need for data obtained in postures more similar to the application posture. In this study, we present a novel method for creating digital human models based on seated MR data. An adult-male volunteer was scanned in a simulated driving posture using a FONAR 0.6T upright MRI scanner with a T1 scanning protocol. To compensate for unavoidable image distortion near the edges of the study, images of the same anatomical structures were obtained in transverse and sagittal planes. Combinations of transverse and sagittal images were used to reconstruct the major anatomical features from the buttocks through the knees, including bone, muscle and fat tissue perimeters, using Solidworks® software. For each MR image, B-splines were created as contours for the anatomical structures of interest, and LOFT commands were used to interpolate between the generated Bsplines. The reconstruction of the pelvis, from MR data, was enhanced by the use of a template model generated in previous work CT images. A non-rigid registration algorithm was used to fit the pelvis template into the MR data. Additionally, MR image processing was conducted to both the left and the right sides of the model due to the intended asymmetric posture of the volunteer during the MR measurements. The presented subject-specific, three-dimensional model of the buttocks and thighs will add value to optimisation cycles in automotive seat development when used in simulating human interaction with automotive seats.
Resumo:
Digital human modeling (DHM), as a convenient and cost-effective tool, is increasingly incorporated into product and workplace design. In product design, it is predominantly used for the development of driver-vehicle systems. Most digital human modeling software tools, such as JACK, RAMSIS and DELMIA HUMANBUILDER provide functions to predict posture and positions for drivers with selected anthropometry according to SAE (Society of Automotive Engineers) Recommended Practices and other ergonomics guidelines. However, few studies have presented 2nd row passenger postural information, and digital human modeling of these passenger postures cannot be performed directly using the existing driver posture prediction functions. In this paper, the significant studies related to occupant posture and modeling were reviewed and a framework of determinants of driver vs. 2nd row occupant posture modeling was extracted. The determinants which are regarded as input factors for posture modeling include target population anthropometry, vehicle package geometry and seat design variables as well as task definitions. The differences between determinants of driver and 2nd row occupant posture models are significant, as driver posture modeling is primarily based on the position of the foot on the accelerator pedal (accelerator actuation point AAP, accelerator heel point AHP) and the hands on the steering wheel (steering wheel centre point A-Point). The objectives of this paper are aimed to investigate those differences between driver and passenger posture, and to supplement the existing parametric model for occupant posture prediction. With the guide of the framework, the associated input parameters of occupant digital human models of both driver and second row occupant will be identified. Beyond the existing occupant posture models, for example a driver posture model could be modified to predict second row occupant posture, by adjusting the associated input parameters introduced in this paper. This study combines results from a literature review and the theoretical modeling stage of a second row passenger posture prediction model project.
Resumo:
Background: Evaluation of scapular posture is a fundamental component in the clinical evaluation of the upper quadrant. This study examined the intrarater reliability of scapular posture ratings. Methods: A test-retest reliability investigation was undertaken with one week between assessment sessions. At each session physical therapists conducted visual assessments of scapula posture (relative to the thorax) in five different scapula postural planes (plane of scapula, sagittal plane, transverse plane, horizontal plane, and vertical plane). These five plane ratings were performed for four different scapular posture perturbating conditions (rest, isometric shoulder; flexion, abduction, and external rotation). Results. A total of 100 complete scapular posture ratings (50 left, 50 right) were undertaken at each assessment. The observed agreement between the test and retest postural plane ratings ranged from 59% to 87%; 16 of the 20 plane-condition combinations exceeded 75% observed agreement. Kappa (and prevalence adjusted bias adjusted kappa) values were inconsistent across the postural planes and perturbating conditions. Conclusions: This investigation generally revealed fair to moderate intrarater reliability in the rating of scapular posture by visual inspection. However, enough disagreement between assessments was present to warrant caution when interpreting perceived changes in scapula position between longitudinal assessments using visual inspection alone.
Resumo:
The rehabilitation programs of bone-anchorage prostheses relying either on the OPRA (Integrum, Sweden) or the ILP (Orthodynamics, Germany) fixation involve some forms of static load bearing exercises (LBE). So far, most of biomechanical studies of these static LBEs focused on the direct measurements of the actual forces and moments applied on the OPRA fixation of individuals with transfemoral amputation (TFA). To date, the proof-of-concept of an apparatus to conduct these kinetic measurements has been presented, along with some preliminary data. The understanding of the kinetic data is essential to improve rehabilitation programs as well as the design of upcoming loading frames. However, kinetic information alone is difficult to interpret without concomitant kinematic data. The purpose of this preliminary study was to introduce a qualitative analysis describing the different body postures during LBE for a group of TFAs.
Resumo:
Objective Evaluation of scapular posture is an integral component of the clinical assessment of painful neck disorders. The aim of this study was to evaluate agreement between therapist judgements of scapula posture in multiple biomechanical planes in individuals with neck pain. Design Inter-therapist reliability study. Setting Research laboratory. Participants Fifteen participants with chronic neck pain. Main outcome measures Four physiotherapists recorded ratings of scapular orientation (relative to the thorax) in five different scapula postural planes (plane of scapula, sagittal plane, transverse plane, horizontal plane, and vertical plane) under four test conditions (at rest, and during three isometric shoulder conditions) in all participants. Inter-therapist reliability was expressed using both generalized and paired kappa coefficient. Results Following adjustment for expected agreement and the high prevalence of neutral ratings (81%), on average both the generalised kappa (0.37) as well as Cohen's Kappa for the two therapist pairs (0.45 and 0.42) demonstrated only slight to moderate inter-therapist reliability. Conclusions The findings suggest that ratings of scapular posture in individuals with neck pain by visual inspection has only slight to moderate reliability and should only be used in conjunction with other clinical tests when judging scapula function in these patients.
Resumo:
The aim of the study was to examine differences in total body water (TBW) measured using single-frequency (SF) and multi-frequency (MF) modes of bioelectrical impedance spectroscopy (BIS) in children and adults measured in different postures using the deuterium (2H) dilution technique as the reference. Twenty-three boys and 26 adult males underwent assessment of TBW using the dilution technique and BIS measured in supine and standing positions using two frequencies of the SF mode (50 kHz and 100 kHz) and the MF mode. While TBW estimated from the MF mode was comparable, extra-cellular fluid (ECF) and intra-cellular fluid (ICF) values differed significantly (p < 0.01) between the different postures in both groups. In addition, while estimated TBW in adult males using the MF mode was significantly (p < 0.01) greater than the result from the dilution technique, TBW estimated using the SF mode and prediction equation was significantly (p < 0.01) lower in boys. Measurement posture may not affect estimation of TBW in boys and adult males, however, body fluid shifts may still occur. In addition, technical factors, including selection of prediction equation, may be important when TBW is estimated from measured impedance.
The relationship between forward head posture and cervical muscle performance in healthy individuals
Resumo:
Background Forward head postures (FHP) are proposed to adversely load cervical spine structures. Neck muscles provide support for the neck, and thus an imbalance in neck muscle performance could potentially contribute to the development of FHP. Previous studies have not considered the interaction of multiple muscle groups with regard to postural orientation. Given the interdependence of muscles along the cervical spine for optimal orientation and physical support of the vertebral column, the performance of a single muscle group may not accurately reflect the coordinated ability of the muscles to maintain a neutral neck posture. Purpose The purpose of this study was to investigate the relationship between FHP and the balance between the cervical extensor and flexor muscle groups in healthy individuals. We hypothesised that the magnitude of FHP would be associated with the strength and endurance performance ratios between the cervical extensor and flexor muscle groups. Methods Twenty male and 24 female volunteers were photographed in the sagittal plane wearing surface markers. The FHP of each participant was measured via the tragus-sternum marker distance over two conditions: (1)in relaxed standing and (2)during a sustained sitting task. Maximal strength (Nm) and endurance (s) performance of the extensor and flexor muscle groups were recorded at the upper (craniocervical flexion/extension (CCF/CCE)) and lower (cervicothoracic flexion/extension (CTF/CTE)) cervical regions. Muscle performance measures were expressed as extension:flexion ratios and their relation to FHP evaluated. A stepwise multiple regression analysis using backward elimination was utilised to examine the relationship between the postural measures and the muscle performance ratio measures. Separate models were used for the two different postural conditions (standing, sustained sitting). Gender was included as a constant correction factor in all regression models. Where gender was a significant variable in the model, analyses were repeated separately for males and females. Results Greater FHP in standing was significantly associated with reduced proportional CTE to CCF strength in females (R2 = 0.21, P = 0.03) and greater proportional CTE to CTF strength in males (R2 = 0.23, P = 0.03). A greater drift into FHP during sustained sitting was associated with a relative reduction in CCE endurance proportional to CTF endurance in females only (R2 = 0.27, P = 0.017). Conclusion(s) This initial study indicates that the balance in performance between the cervical flexor and extensor muscle groups may impact FHP in healthy individuals. However, the findings were inconsistent across different muscle performance ratios and gender. Larger scale studies are therefore now needed to further clarify the relationship between FHP and muscle performance. Implications The findings suggest that relative performance of the various cervical muscle groups needs to be accounted for when considering postural correction strategies in the clinical setting, as is often recommended.
Resumo:
Background: Forward head posture (FHP) is a commonly reported deviation from a neutral neck posture, usually implying a protracted head position in the sagittal plane. Habitual FHP has been associated with a higher incidence of painful neck disorders, changes in joint mobility and muscle behaviour within the cervicothoracic regions. One factor that has received attention in the literature with regards to FHP is flexibility of the neck. A number of previous studies have previously investigated the relationship between neck flexibility and neck posture under different conditions, but at present this relationship is unclear.
Resumo:
In this study, we investigated measures of nonlinear dynamics and chaos theory in regards to heart rate variability in 27 normal control subjects in supine and standing postures, and 14 subjects in spontaneous and controlled breathing conditions. We examined minimum embedding dimension (MED), largest Lyapunov exponent (LLE) and measures of nonlinearity (NL) of heart rate time series. MED quantifies the system's complexity, LLE predictability and NL, a measure of deviation from linear processes. There was a significant decrease in complexity (P<0.00001), a decrease in predictability (P<0.00001) and an increase in nonlinearity (P=0.00001) during the change from supine to standing posture. Decrease in MED, and increases in NL score and LLE in standing posture appear to be partly due to an increase in sympathetic activity of the autonomous nervous system in standing posture. An improvement in predictability during controlled breathing appears to be due to the introduction of a periodic component. (C) 2000 published by Elsevier Science B.V.
Resumo:
The interaction between the digital human model (DHM) and environment typically occurs in two distinct modes; one, when the DHM maintains contacts with the environment using its self weight, wherein associated reaction forces at the interface due to gravity are unidirectional; two, when the DHM applies both tension and compression on the environment through anchoring. For static balancing in first mode of interaction, it is sufficient to maintain the projection of the centre of mass (COM) inside the convex region induced by the weight supporting segments of the body on a horizontal plane. In DHM, static balancing is required while performing specified tasks such as reach, manipulation and locomotion; otherwise the simulations would not be realistic. This paper establishes the geometric relationships that must be satisfied for maintaining static balance while altering the support configurations for a given posture and altering the posture for a given support condition. For a given location of the COM for a system supported by multiple point contacts, the conditions for simultaneous withdrawal of a specified set of contacts have been determined in terms of the convex hulls of the subsets of the points of contact. When the projection of COM must move beyond the existing support for performing some task, new supports must be enabled for maintaining static balance. This support seeking behavior could also manifest while planning for reduction of support stresses. Feasibility of such a support depends upon the availability of necessary features in the environment. Geometric conditions necessary for selection of new support on horizontal,inclined and vertical surfaces within the workspace of the DHM for such dynamic scenario have been derived. The concepts developed are demonstrated using the cases of sit-to-stand posture transition for manipulation of COM within the convex supporting polygon, and statically stable walking gaits for support seeking within the kinematic capabilities of the DHM. The theory developed helps in making the DHM realize appropriate behaviors in diverse scenarios autonomously.