993 resultados para Polymeric membrane sensor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A plasticized Cr3+ ion sensor by incorporating 2,3,8,9-tetraphenyl-1,4,7,10-tetraazacyclododeca-1,3,7,9-tetraene (TTCT) ionophore exhibits a good potentiometric response for Cr3+ over a wide concentration range (1.0×10-6-1.0×10-1 M) with a slope of 19.5 mV per decade. The sensor response is stable for at least three months. Good selectivity for Cr3+ in comparison with alkali, alkaline earth, transition and heavy metal ions, and minimal interference are caused by Li+, Na+, K+, Co2+, Hg2+, Ca2+, Pb2+ and Zn2+ ions, which are known to interfere with other chromium membrane sensors. The TTCT-based electrode shows a fast response time (15 s), and can be used in aqueous solutions of pH 3 - 5.5. The proposed sensor was used for the potentiometric titration of Cr3+ with EDTA and for a direct potentiometric determination of Cr3+ content in environmental samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new PVC membrane sensor, which is highly selective towards Ni (II) ions, has been developed using a thiophene-derivative Schiff base as the ionophore. The best performance was exhibited by the membrane having the composition percentage ratio of 5:3:61:31 (ionophore:NaTPB:DBP:PVC) (w=w), where NaTPB is the anion excluder, sodium tetraphenylborate and DBP is the plasticizing agent (dibutyl phthalate). The membrane exhibited a good Nernstian response for nickel ions over the concentration range of 1.0 10 1– 5.0 10 6M (limit of detection is 1.8 10 6 M) with a slope of 29.5 1.0mV per decade of activity. It has a fast response time of<20 s and can be used for a period of 4 months with good reproducibility. The sensor is suitable for use in aqueous solutions of a wide pH range of 3.2–7.9. The sensor shows high selectivity to nickel ions over a large number of mono-, bi- and trivalent cations. It has been successfully used as an indicator electrode in the potentiometric titration of nickel ions against EDTA and also for direct determination of nickel content in real samples – wastewater samples from electroplating industries and Indian chocolates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new PVC membrane sensor, which is highly selective towards Ni (II) ions, has been developed using a thiophene-derivative Schiff base as the ionophore. The best performance was exhibited by the membrane having the composition percentage ratio of 5:3:61:31 (ionophore:NaTPB:DBP:PVC) (w=w), where NaTPB is the anion excluder, sodium tetraphenylborate and DBP is the plasticizing agent (dibutyl phthalate). The membrane exhibited a good Nernstian response for nickel ions over the concentration range of 1.0 10 1– 5.0 10 6M (limit of detection is 1.8 10 6 M) with a slope of 29.5 1.0mV per decade of activity. It has a fast response time of<20 s and can be used for a period of 4 months with good reproducibility. The sensor is suitable for use in aqueous solutions of a wide pH range of 3.2–7.9. The sensor shows high selectivity to nickel ions over a large number of mono-, bi- and trivalent cations. It has been successfully used as an indicator electrode in the potentiometric titration of nickel ions against EDTA and also for direct determination of nickel content in real samples – wastewater samples from electroplating industries and Indian chocolates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fabrication and analytical applications of two types of potentiometric sensors for the determination of ketoconazole (KET) are described. The sensors are based on the use of KET-molybdophosphoric acid (MPA) ion pair as electroactive material. The fabricated sensors include both polymer membrane and carbon paste electrodes. Both sensors showed a linear, stable and near Nernstian slope of 57.8mV=decade and 55.2mV=decade for PVC membrane and carbon paste sensors respectively over a relatively wide range of KET concentration (1×10-2-5×10-5 and 1×10-2-1×10-6). The sensors showed a fast response time of <30 sec and <45 sec. A useful pH range of 3–6 was obtained for both types of sensors. A detection limit of 2.96 10 5M was obtained for PVC membrane sensor and 6.91 10 6M was obtained for carbon paste sensor. The proposed sensors proved to have a good selectivity for KET with respect to a large number of ions. The proposed sensors were successfully applied for the determination of KET in pharmaceutical formulations. The results obtained are in good agreement with the values obtained by the standard method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fabrication and electrochemical response characteristics of two novel potentiometric sensors for the selective determination of domperidone (DOM) are described. The two fabricated sensors incorporate DOM–PTA (phosphotungstic acid) ion pair as the electroactive material. The sensors include a PVC membrane sensor and a carbon paste sensor. The sensors showed a linear, stable, and near Nernstian slope of 56.5 and 57.8 mV/decade for PVC membrane and carbon paste sensors, respectively over a relatively wide range of DOM concentration (1.0 9 10-1–1.0 9 10-5 and 1.0 9 10-1–3.55 9 10-6 M). The response time of DOM–PTA membrane sensor was less than 25 s and that in the case of carbon paste sensor was less than 20 s.Auseful pH range of 4–6 was obtained for both types of sensors. A detection limit of 7.36 9 10-5 M was obtained for PVC membrane sensor and 1.0 9 10-6 M was obtained for carbon paste sensor. The proposed sensors showed very good selectivity toDOMin the presence of a large number of other interfering ions. The analytical application of the developed sensors in the determination of the drug in pharmaceutical formulations such as tablets was investigated. The results obtained are in good agreement with the values obtained by the standard method. The sensors were also applied for the determination ofDOMin real samples such as urine by the standard addition method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In fluid dynamics research, pressure measurements are of great importance to define the flow field acting on aerodynamic surfaces. In fact the experimental approach is fundamental to avoid the complexity of the mathematical models for predicting the fluid phenomena. It’s important to note that, using in-situ sensor to monitor pressure on large domains with highly unsteady flows, several problems are encountered working with the classical techniques due to the transducer cost, the intrusiveness, the time response and the operating range. An interesting approach for satisfying the previously reported sensor requirements is to implement a sensor network capable of acquiring pressure data on aerodynamic surface using a wireless communication system able to collect the pressure data with the lowest environmental–invasion level possible. In this thesis a wireless sensor network for fluid fields pressure has been designed, built and tested. To develop the system, a capacitive pressure sensor, based on polymeric membrane, and read out circuitry, based on microcontroller, have been designed, built and tested. The wireless communication has been performed using the Zensys Z-WAVE platform, and network and data management have been implemented. Finally, the full embedded system with antenna has been created. As a proof of concept, the monitoring of pressure on the top of the mainsail in a sailboat has been chosen as working example.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A polymeric hydrogel containing a photoinduced electron transfer (PET) based probe for Zn(ii) has been formulated into the wells of a 96-well plate. Upon addition of Zn(ii) ions to selected wells, the fluorescence of the gel was observed to increase in a concentration dependent manner in the 0.25-1.75 mM range. The millimolar binding constant observed for this probe is higher than that reported for other Zn(ii) probes in the literature and offers the possibility to determine the concentration of this ion in environments where the Zn(ii) concentration is high. The combination of the multi-well plate set-up with fluorescence detection offers the possibility of high-throughput screening using low sample volumes in a timely manner. To the best of our knowledge, this is the first reported example of a polymeric hydrogel sensor for zinc with capability for use in fluorescence multi-well plate assay.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Membrane filtration in municipal wastewater treatment is being increasingly used to improve the quality of water and increase the productivity of existing plants. However, membrane fouling encountered in reclamation of municipal wastewater represents serious design and operational concern. There are several fouling models which are being developed and used as a powerful tool to increase the understanding of the fouling mechanisms and its key characteristics that influence the design of optimal process and operating conditions. This study investigates and compares the fouling mechanisms of three different types of polymeric and ceramic ultrafiltration (UF) and microfiltration (MF) membranes in the recovery of water from secondary effluent. The result demonstrated that ceramic UF membrane produced very high quality of water compared to polymeric UF and ceramic MF membranes. Out of four fouling models used to fit the experimental flux data, cake filtration and pore narrowing and complete pore blocking models predicted the initial fluxes of polymeric UF membrane more accurately. On the other hand, the cake filtration and pore narrowing models predicted the performance of ceramic UF membrane. Whereas, pore narrowing model predicted the performance of ceramic MF membrane more precisely compared to other three models. Further, the application of unified membrane fouling index (UMFI) was used to assess the fouling potential of the membranes. Good agreement between UMFI and other models was found. © 2013 Copyright Balaban Desalination Publications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nanofiltration (NF) is a pressure-driven membrane process, intermediate between reverse osmosis and ultrafiltration. Commercially available polymeric membranes have been used in a wide range of applications, such as drinking, process industry and waste water treatment. For all the applications requiring high stability and harsh washing procedures inorganic membranes are preferred due to their high chemical inertia. Typically, γ – Al2O3 as well as TiO2 and ZrO2 selective layers are used; the latter show higher chemical stability in a wide range of pH and temperatures. In this work the experimental characterization of two different type of membrane has been performed in order to investigate permeation properties, separation performance and efficiency with aqueous solutions containing strong inorganic electrolytes. The influence of salt concentration and feed pH as well as the role of concentration polarization and electrolyte type on the membrane behavior are investigated. Experimentation was performed testing a multi–layer structured NF membrane in α-Al2O3, TiO2 and ZrO2, and a polymeric membrane, in polyamide supported on polysulfone, with binary aqueous solutions containing NaCl, Na2SO4 or CaCl2; the effect of salt composition and pH in the feed side was studied both on flux and salt rejection. All the NF experimental data available for the two membranes were used to evaluate the volumetric membrane charge (X) corresponding to each operative conditions investigated, through the Donnan Steric Pore Model and Dielectric Exclusion (DSPM&DE). The results obtained allow to understand which are the main phenomena at the basis of the different behaviors observed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of polymeric membranes is extremely important in several industries such as nuclear, biotechnology, chemical and pharmaceutical. In the nuclear area, for instance, systems based on membrane separation technologies are currently being used in the treatment of radioactive liquid effluent, and new technologies using membranes are being developed at a great rate. The knowledge of the physical characteristics of these membranes, such as, pore size and the pore size distribution, is very important to the membranes separation processes. Only after these characteristics are known is it possible to determine the type and to choose a particular membrane for a specific application. In this work, two ultrasonic non destructive techniques were used to determine the porosity of membranes: pulse echo and transmission. A 25 MHz immersion transducer was used. Ultrasonic signals were acquired, for both techniques, after the ultrasonic waves passed through a microfiltration polymeric membrane of pore size of 0.45 μm and thickness of 180 μm. After the emitted ultrasonic signal crossed the membrane, the received signal brought several information on the influence of the membrane porosity in the standard signal of the ultrasonic wave. The ultrasonic signals were acquired in the time domain and changed to the frequency domain by application of the Fourier Fast Transform (FFT), thus generating the material frequency spectrum. For the pulse echo technique, the ultrasonic spectrum frequency changed after the ultrasonic wave crossed the membrane. With the transmission technique there was only a displacement of the ultrasonic signal at the time domain.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Le lessivage des nitrates, la contamination de la nappe phréatique et l’eutrophisation des cours d’eau figurent parmi les enjeux planétaires qui affectent la durabilité de l’agriculture et des ressources naturelles. Ce mémoire présente le développement d’une première génération d’un nouveau senseur électrochimique pour le dosage de précisions des nitrates. Celui-ci est basé sur la spectroscopie d’impédance électrochimique d’une membrane polymérique sélective aux ions. Grâce à cette approche, un senseur compact et abordable a été produit. Par son utilisation en solutions aqueuses et en substrats de croissance saturés, il a été montré que le senseur permettait de quantifier des ajouts contrôlés de nitrates allant de 0,6 ppm à 60 ppm. La mise en application en substrat de croissance a pu être étudiée en comparaison avec des méthodes certifiées ISO 17025 visant l’analyse de ces substrats. Le senseur a aussi montré une grande versatilité par son utilisation sur divers appareils de mesure d’impédance. En plus, il a démontré une stabilité possible suite à une implantation d’un mois directement en substrat de croissance sous les variables environnementales d’une pépinière forestière. Par l’étude du spectre d’impédance du senseur en solutions pures de différentes concentrations, il a aussi été possible de proposer le circuit électrique équivalent du système, qui met en évidence deux parcours compétitifs du courant, un au coeur de la membrane et un deuxième en solution. Les résultats de ces travaux sont au coeur de deux publications scientifiques dont le manuscrit est inclus à ce mémoire. Pour finir cette étude, des suggestions seront faites pour guider l’amélioration du senseur par le développement d’une deuxième génération de celui-ci.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O objectivo deste trabalho foi o desenvolvimento de sensores químicos para aniões em solução aquosa. Os sensores basearam-se em cristais piezoelétricos de quartzo revestidos com macrociclos pirrólicos. Sensores com porfirinas, hexafirinas, ftalocianinas e uma rede metalo-orgânica como filmes de reconhecimento foram avaliados no que respeita à reversibilidade, sensibilidade, seletividade e tempo de vida. A sensibilidade aos aniões presentes nas águas minerais destinadas ao consumo humano dos sensores com macrociclos pirrólicos dependia dos grupos substituintes na periferia do macrociclo. A presença de grupos substituintes NH potenciou a sensibilidade, sendo o valor mais elevado obtido com o grupo NH-tosilo. Técnicas espectroscópicas permitiram mostrar que a principal interação entre o anião e o composto se fazia por meio de pontes de hidrogénio entre o anião e o grupo NH. A sensibilidade destes compostos dependia ainda da quantidade do composto depositado sobre o cristal. Nenhum dos sensores era específico, mas apresentavam variações na seletividade com o composto pirrólico sobre o cristal. O sensor com uma membrana polimérica que incorporou uma rede metalo-orgânica construída com moléculas de uma ftalocianina de magnésio com grupos NH-tosilo ligados por iões cobre apresentou coeficientes de seletividade muito diferentes de todos os restantes sensores. Uma língua eletrónica construída com três dos novos sensores foi capaz de determinar simultaneamente as concentrações dos iões HCO3-, Cl- e SO42- em amostras de água mineral engarrafada, não tendo os valores obtidos sido estatisticamente diferentes (α=0,05) daqueles que foram obtidos por cromatografia iónica ou volumetria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

聚合物膜离子选择性电极具有选择性高、使用简便、价格低廉等优点,在环境监测中日益受到人们的关注。这类电极的响应特性主要取决于聚合物膜相中起分子识别作用的离子载体的选择性。本文设计合成了一系列对重金属离子具有高选择性的有机配体,并将其作为电中性离子载体应用于银、汞、锌、铬等离子选择性电极中,实现了对重金属离子的高选择性测定。此外,我们对海水中有机物质的紫外线消解进行了研究,优化了消解条件,采用离子选择性电极技术实现了对海水中重金属污染物的快速检测。具体内容如下: 1、以硫氮杂冠醚为离子载体的银离子选择性电极制备及性能研究。 合成了一系列硫氮杂冠醚配体,通过优化反应条件,提高了反应产率,简化了产物处理过程。将此类冠醚作为离子载体用于银离子选择性电极的制备,并讨论了冠醚环大小、冠醚环的韧性以及硫原子个数对电极选择性的影响。在此研究基础上,利用沉淀-溶解平衡法调节内充液主离子浓度,采用冠醚9,10,12,13,24,25-六氢-5H,15H,23H-二苯[b,q][1,7,10,13,19,4,16]五硫二氮二十三环-6,16 (7H,17H)-二酮环作为低检出限银离子选择性电极载体,通过优化电极的内充液和聚合物膜组份,测得最低检出限为2.2×10-10 M,电极电位响应斜率为54.5 mV/dec.,线性范围为1.0×10-9-1.0×10-5 M,电极使用寿命为一个月。采用标准加入法,成功实现了自来水中银离子浓度的测试,并以该电极作为指示电极,以硝酸银溶液为滴定剂,成功滴定了I-、Br-和Cl-离子的混合液。 2、以1,2,4-三唑衍生物为离子载体的汞离子选择性电极的制备及性能表征。 设计合成了一种基于1,2,4-三唑的希夫碱结构化合物,3,5-二(二硫代甲酸苄酯肼基-2-亚甲胺基苯氧甲基)-1-(四氢-2H-吡喃)-1H-1,2,4-三唑,并成功用作中性载体实现对汞离子的测定。在最佳膜组分条件下,以该化合物作为载体的汞离子选择性电极的检出限为2.6×10-7 M Hg2+,电极电位响应斜率为29.3±0.3 mV/dec.,线性范围为1.0×10-6-3.0×10-4 M。该电极使用寿命为2个月,在pH 2.6-5.2范围内测试不受酸度影响。以该电极为指示电极,以EDTA为滴定剂,可准确滴定溶液中汞离子的浓度。 3、以希夫碱结构化合物为离子载体的锌离子选择性电极的制备及性能研究。 本文设计了一种含吡啶杂环的希夫碱结构化合物(E)-N'-(吡啶-2-亚甲胺基)-2-((E)-吡啶-2-亚甲胺基)苯甲酰肼,并成功用作离子载体实现对锌离子的测定。在最佳膜组分条件下,以该化合物为载体的锌离子选择性电极的检出限为7.4×10-7M Zn2+,电极电位响应斜率为25.9 mV/dec.,线性范围为1.0×10-6-1.0×10-3 M。该电极使用寿命为3个月,在pH 3.4-5.8范围内测试不受酸度影响。以该电极为指示电极,以EDTA为滴定剂,可准确滴定溶液中锌离子的浓度。 4、紫外光在线消解技术用于离子选择性电极测试海水中重金属离子的研究。 海水中重金属离子大多以络合物形式存在,而离子选择性电极只对游离态金属离子响应,因此要实现离子选择性电极测试海水中的重金属,首先必须使金属离子从络合物中游离出来。紫外光消解方法相对于其它海水预处理手段是一种清洁的样品预处理方法。我们以模拟海水为考察对象,考察了盐度、酸度、有机物浓度对消解效率的影响,并在优化消解条件的基础上对实际海水进行消解,利用离子选择性电极成功实现了海水中铜离子浓度的测试,测试值与ICP-MS数值一致。 5、合成希夫碱结构罗丹明B衍生物作为载体和分子探针用于Cr3+离子的检测。 设计合成了希夫碱结构罗丹明B衍生物2-亚甲胺基-8-乙酯基喹啉-罗丹明。荧光法显示,在化合物对铬离子(III)有较好的选择性,进而我们将该化合物作为分子探针进行了详细的研究。结果表明,分子探针与铬离子配位比为1:1,铬离子响应的线性范围是8.0×10-7-8.0×10-5 M,检测下限为1.9×10-7 M。电化学测试结果显示,基于该化合物为载体的离子选择性电极对铬离子(III)的选择性较差。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two-dimensionally arranged gold rings were prepared by depositing a polymeric membrane bearing a dense array of uniform pores onto a mica substrate, filling the pores with a solution of a gold precursor, evaporation of the solvent and calcinations. The epitaxy of gold rings is confirmed by x-ray diffraction measurements, and the epitaxial relationship between gold rings and the mica was found to be Au(111)[1-10]parallel to mica(001)[010]. The polar and azimuthal angular spreads are 0.3 degrees and 1 degrees, respectively, which is at least equal to or better than the quality of the corresponding epitaxial gold-film on mica. (c) 2005 American Institute of Physics.