94 resultados para Polybrominated Diphenylethers
Resumo:
The incidence of breast cancer has risen worldwide to unprecedented levels in recent decades, making it now the major cancer of women in many parts of the world.1 Although diet, alcohol, radiation and inherited loss of BRCA1/2 genes have all been associated with increased incidence, the main identified risk factors are life exposure to hormones including physiological variations associated with puberty/pregnancy/menopause,1 personal choice of use of hormonal contraceptives2 and/or hormone replacement therapy.3–6 On this basis, exposure of the human breast to the many environmental pollutant chemicals capable of mimicking or interfering with oestrogen action7 should also be of concern.8 Hundreds of such environmental chemicals have now been measured in human breast tissue from a range of dietary and domestic exposure sources7 ,9 including persistent organochlorine pollutants (POPs),10 polybrominated diphenylethers and polybromobiphenyls,11 polychlorinated biphenyls,12 dioxins,13 alkyl phenols,14 bisphenol-A and chlorinated derivatives,15 as well as other less lipophilic compounds such as parabens (alkyl esters of p-hydroxybenzoic acid),16 but studies investigating any association between raised levels of such compounds and the development of breast cancer remain inconclusive.7–16 However, the functionality of these chemicals has continued to be assessed on the basis of individual chemicals rather than the environmental reality of long-term low-dose exposure to complex mixtures. This misses the potential for individuals to have high concentrations of different compounds but with a common mechanism of action. It also misses the complex interactions between chemicals and physiological hormones which together may act to alter the internal homeostasis of the oestrogenic environment of mammary tissue.
Resumo:
BACKGROUND: Concentrations of brominated flame retardants (BFRs) are reported to increase in marine ecosystems. OBJECTIVES: Characterize exposure to BFRs in animals from different trophic levels in North-East Atlantic coastal marine ecosystems along a latitudinal gradient from southern Norway to Spitsbergen, Svalbard, in the Arctic. Calanoid species were collected from the Oslofjord (59°N), Froan (64°N), and Spitsbergen (> 78°N); Atlantic cod (Gadus morhua) from the Oslofjord and Froan; polar cod (Boreogadus saida) from Bear Island (74°N) and Spitsbergen; harbor seal (Phoca vitulina) from the Oslofjord, Froan, and Spitsbergen; and ringed seal (Phoca vitulina) from Spitsbergen. Eggs of common tern (Sterna hirundo) were collected from the Oslofjord, and eggs of arctic terns (Sterna paradisaea) from Froan and Spitsbergen. RESULTS: Levels of polybrominated diphenylethers (PBDEs) and hexabromocyclododecane (HBCD) generally decreased as a function of increasing latitude, reflecting distance from release sources. The clear latitudinal decrease in levels of BFRs was not pronounced in the two tern species, most likely because they are exposed during migration. The decabrominated compound BDE-209 was detected in animals from all three ecosystems, and the highest levels were found in arctic tern eggs from Spitsbergen. HBCD was found in animals from all trophic levels, except for in calanoids at Froan and Spitsbergen. CONCLUSIONS: Even though the levels of PBDEs and HBCD are generally low in North-East Atlantic coastal marine ecosystems, there are concerns about the relatively high presence of BDE-209 and HBCD.
Resumo:
This volume of the IARC Monographs provides evaluations of the carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. Polychlorinated biphenyls are a class of aromatic compounds comprising 209 congeners, each containing 1 to 10 chlorine atoms attached to a biphenyl nucleus. Technical products, which were manufactured to obtain a certain degree of chlorination, are mixtures of numerous congeners. These products were widely used as dielectric fluid in capacitors and transformers, and to a lesser extent in building materials. Although their production and use has been banned in most countries, these compounds are ubiquitous environmental pollutants, including in polar regions and the deep ocean, because they are persistent and bioaccumulate. Worldwide monitoring programmes have shown that polychlorinated biphenyls are present in most samples of human milk. An IARC Monographs Working Group reviewed epidemiological evidence, animal bioassays, and mechanistic and other relevant data to reach conclusions as to the carcinogenic hazard to humans of polychlorinated biphenyls, of the subclass of dioxinlike polychlorinated biphenyls, and of polybrominated biphenyls.
Resumo:
Antarctic plant communities are dominated by lichens and mosses which accumulate semivolatile organic compounds (SOCs) such as polybrominated diphenyl ethers (PBDEs) directly from the atmosphere. Differences in the levels of PBDEs observed in lichens and mosses collected at King George Island in the austral summers 2004-05 and 2005-06 are probably explained by environmental and/or plant parameters. Contamination of lichens showed a positive correlation with local precipitation, suggesting that wet deposition processes are a major mechanism controlling the uptake of most PBDE congeners. These findings are in agreement with physical-chemical data supporting that tetra- through hepta-BDEs in the Antarctic atmosphere are basically bound to aerosols. Conversely, accumulation of PBDEs in mosses appears to be controlled by other environmental factors and/or plant-specific characteristics. Model simulations demonstrated that an ocean-atmosphere coupling may have played a role in the long-range transport of less volatile SOCs such as PBDEs to Antarctica. According to simulations, the atmosphere is the most important transport medium for PBDEs while the surface ocean serves as a temporary storage compartment, boosting the deposition/volatilization ""hopping"" effect similarly to vegetation on continents. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The occurrence and temporal variation of 18 perfluoroalkyl substances (PFASs) and 8 polybrominated diphenyl ethers (PBDEs) in the European Alps was investigated in a 10 m shallow firn core from Colle Gnifetti in the Monte Rosa Massif (4455 m above sea level). The firn core encompasses the years 1997-2007. Firn core sections were analyzed by liquid chromatography-tandem mass spectrometry (PFASs) and gas chromatography-mass spectrometry (PBDEs). We detected 12 PFASs and 8 PBDEs in the firn samples. Perfluorobutanoic acid (PFBA; 0.3-1.8 ng L(-1)) and perfluorooctanoic acid (PFOA; 0.2-0.6 ng L(-1)) were the major PFASs while BDE 99 (
Resumo:
This MPH thesis consists of (1) literature review of the relatively new synthetic persistent organic pollutants (POP), polybrominated diphenyl ethers (PBDEs), a type of flame retardant posing a potential public health hazard, (2) Presentation of data on PBDE levels in dryer lint from Dallas, TX and Hamburg, Germany. ^ PBDEs are used as additive fire retardants in plastics, polyurethane foam and electronic equipment to reduce flammability and thus save life and property. PBDEs have been widely used beginning in the 1970s. They resemble polychlorinated biphenyls (PCBs) in structure and toxicity. PBDEs are found in environmental sediments, sludges, and wildlife and even in human blood, milk and tissues. ^ PBDEs, due to their lipophilicity, accumulate in fat and other tissues and biomagnify up the food chain, with increasing concentrations. Animal studies have suggested potential health effects including thyroid disruption, permanent learning and memory impairment, fetal malformations, developmental neurotoxicity and, at high doses, possibly cancer. ^ PBDE levels are increasing in blood and breast milk in North America, but PBDEs intake unlike PCBs appears to be not primarily through food; food PBDE levels in the U.S. are not markedly higher than in Europe yet U.S. human blood and milk levels are much higher. For this reason various exposure pathways including PBDE contaminated dust and air have been studied to better characterize routes of PBDE intake into humans. ^ The scientific literature on PBDE levels in household dust reports higher PBDE concentration in dust than that found in dryer lint; levels in the U.S are elevated compared to other countries with congeners such as BDE 47, 99, 100 and 209 predominating. The United Kingdom has elevated BDE 209 due to high usage of Deca commercial mixture. These studies suggest that indoor PBDE contamination through household dust could be a potential source of PBDE exposure and body burden especially in young children. ^ PBDE levels in dryer lint from U.S ranged from 321 to 3073 ng/g (Mean: 1138 ng/g, Median: 803 ng/g) and from Germany were from 330 to 2069 ng/g (Median: 71ng/g, Mean: 361 ng/g). High median levels in U.S samples indicate contamination of lint with PBDEs although the source of the PBDEs in lint may be from dryer electrical components or air deposition onto clothes, lint may be one source of PBDE exposure to humans. ^