997 resultados para Plasma medicine


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decades, the possibility to generate plasma at atmospheric pressure gave rise to a new emerging field called plasma medicine; it deals with the application of cold atmospheric pressure plasmas (CAPs) or plasma-activated solutions on or in the human body for therapeutic effects. Thanks to a blend of synergic biologically active agents and biocompatible temperatures, different CAP sources were successfully employed in many different biomedical applications such as dentistry, dermatology, wound healing, cancer treatment, blood coagulation, etc.… Despite their effectiveness has been verified in the above-mentioned biomedical applications, over the years, researchers throughout the world described numerous CAP sources which are still laboratory devices not optimized for the specific application. In this perspective, the aim of this dissertation was the development and the optimization of techniques and design parameters for the engineering of CAP sources for different biomedical applications and plasma medicine among which cancer treatment, dentistry and bioaerosol decontamination. In the first section, the discharge electrical parameters, the behavior of the plasma streamers and the liquid and the gas phase chemistry of a multiwire device for the treatment of liquids were performed. Moreover, two different plasma-activated liquids were used for the treatment of Epithelial Ovarian Cancer cells and fibroblasts to assess their selectivity. In the second section, in accordance with the most important standard regulations for medical devices, were reported the realization steps of a Plasma Gun device easy to handle and expected to be mounted on a tabletop device that could be used for dental clinical applications. In the third section, in relation to the current COVID-19 pandemic, were reported the first steps for the design, realization, and optimization of a dielectric barrier discharge source suitable for the treatment of different types of bioaerosol.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plasma processing of the surfaces of biomaterials is interesting because it enables modification of the characteristics of a surface without affecting bulk properties. In addition, the results are strongly influenced by the conditions of the treatment. Therefore, by adjusting the plasma parameters it is possible to tailor the surface properties to best fulfill the requirements of a given application. In this work, polyurethane substrates have been subjected to sulfur hexafluoride glow discharge plasmas. The influences of different SF 6 plasma exposure times and pressures on the adhesion of Staphylococcus aureus and Pseudomonas aeruginosa to the polymer have been investigated. The wettability and surface free energy have been evaluated via contact angle measurements. At low pressure (6.7 Pa) the contact angle decreases with increasing exposure time in the 180 s to 540 s interval, but at higher pressure (13.3 Pa) it increases as a function of the same variable. Bacterial adhesion has been quantified from in vitro experiments by determining the growth of colonies on Petri dishes treated with agar nutrient. It has been observed that the surface properties play an important role in microbe adhesion. For instance, the density of adhered P. aeruginosa decreased as the surface contact angle increased. S. aureus preferred to adhere to hydrophobic surfaces. © 2011 by Begell House, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study evaluated the antifungal potential of low-temperature plasma (LTP) on a 72-hour Candida albicans biofilm. A growth inhibition zone test was conducted with agar plates inoculated with C. albicans and submitted to LTP and argon application at 3 and 10 mm for 10, 30, 60, 90, and 120 seconds. The groups for biofilm assays were 60 seconds of LTP application with a tip-to-sample distance of 3 mm (LTP-3) and 10 mm (LTP-10); –application of only argon gas for 60 seconds with a tip-to-sample distance of 3 mm (Ar-3) and 10 mm (Ar-10); and no treatment. The C. albicans biofilm was grown on saliva-coated discs. The medium was replaced every 24 hours. Confocal laser scanning microscopy revealed the proportion of live and dead cells, and variable pressure scanning electron microscopy (VPSEM) showed biofilm/cell structure. No inhibition zone was observed for control and either Ar groups. For the LTP groups, a progressively increasing of inhibition zone diameter was observed for different treatment durations. The LTP-3 and LTP-10 groups presented higher proportions of dead cells compared with the Ar-3 and Ar-10 groups. VPSEM revealed cell perforations in the LTP-3 and LTP-10 groups. A short period of LTP exposure demonstrated an antifungal effect on C. albicans biofilm.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Il plasma è denominato quarto stato della materia ed è generalmente definito come un gas ionizzato costituito da elettroni e ioni. In ambito industriale i plasmi hanno trovato impiego per diversi tipi di applicazione quali il trattamento di superfici, la degradazione e lo smaltimento di rifiuti, il taglio di materiali, primi fra tutti i metalli. In particolare i plasmi atmosferici di non equilibrio, che possiedono la caratteristica di mantenere una temperatura macroscopica paragonabile a quella ambiente, sono studiati anche per applicazioni in campo biomedicale, oltre che in quello industriale. Da alcuni anni sono quindi oggetto di indagine per le caratteristiche di sterilizzazione di fluidi o solidi, per la coagulazione e il trattamento di lesioni e lacerazioni, per trattamenti su superfici quali la pelle, per il trattamento di cellule tumorali e staminali o per interfacce dispositivi biomedicali – corpo umano. Questo nuovo settore di ricerca, in grande sviluppo, viene comunemente definito Plasma & Medicine. Poiché in ambito biomedicale, un trattamento plasma può interessare diverse tipologie di substrati biologici e materiali, è stato scelto come obiettivo della tesi la caratterizzazione di una sorgente di plasma di non equilibrio a pressione atmosferica, denominata Plasma Jet, posta ad interagire con substrati di diversa natura (metallico, dielettrico, liquido). La sorgente utilizzata è in grado di produrre un plasma freddo e biocompatibile, generando diverse specie chimiche che garantiscono effetti molto interessanti (sterilizzazione, accelerazione della coagulazione sanguigna, cura di infezioni) per un utilizzo a contatto con il corpo umano o con componenti ingegneristiche che devono venire ad interagire con esso, quali stent, cateteri, bisturi. La caratterizzazione è stata effettuata mediante l’ausilio di due tecniche diagnostiche: la Schlieren Imaging, che permette di studiare la fluidodinamica del gas, OES (Optical Emission Spettroscopy), che permette di analizzare la composizione chimica della piuma di plasma e di determinare le specie chimiche che si producono. Questo elaborato si propone quindi di fornire una breve introduzione sul mondo dei plasmi e sulle loro caratteristiche, citando alcuni dei settori in cui viene utilizzato, industriali e biomedicali, con particolare attenzione per questi ultimi. Successivamente saranno riportati i setup utilizzati per le acquisizioni e una discussione sui risultati ottenuti dalle diverse tecniche diagnostiche utilizzate sul Jet durante i trattamenti. In ultimo sono poi riportate le conclusioni in modo da presentare le caratteristiche più importanti del comportamento della sorgente.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plasma medicine is a branch of plasma-promising biomedical applications that uses cold atmospheric plasma (CAP) as a therapeutic agent in treating a wide range of medical conditions including cancer. Epithelial ovarian cancer (EOC) is a highly malignant and aggressive form of ovarian cancer, and most patients are diagnosed at advanced stages which significantly reduces the chances of successful treatment. Treatment resistance is also common, highlighting the need for novel therapies to be developed to treat EOC. Research in Plasma Medicine has revealed that plasma has unique properties suitable for biomedical applications and medical therapies, including responses to hormetic stimuli. However, the exact mechanisms by which CAP works at the molecular level are not yet fully understood. In this regard, the main goal of this thesis is to identify a possible adjuvant therapy for cancer, which could exert a cytotoxic effect, without damaging the surrounding healthy cells. An examination of different plasma-activated liquids (PALs) revealed their potential as effective tools for significantly inhibiting the growth of EOC. The dose-response profile between PALs and their targeted cytotoxic effects on EOC cells without affecting healthy cells was established. Additionally, it was validated that PALs exert distinct effects on different subtypes of EOC, possibly linked to the cells' metabolism. This suggests the potential for developing new, personalized anticancer strategies. Furthermore, it was observed that CAP treatment can alter the chemistry of a biomolecule present in PAL, impacting its cytotoxic activity. The effectiveness of the treatment was also preliminarily evaluated in 3D cultures, opening the door for further investigation of a possible correlation between the tumor microenvironment and PALs' resistance. These findings shed light on the intricate interplay between CAP and the liquid substrate and cell behaviour, providing valuable insights for the development of a novel and promising CAP-based cancer treatment for clinical application.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

P>Background This study examined the effects of acute supramaximal exercise (similar to 115% VO(2max)) on the blood lipid profile for three different carbohydrate (CHO) storage levels (control, low and high). Methods Six male subjects were randomly divided into three different groups: control, low CHO and high CHO. These groups differed in the diet to which the subjects were submitted before each exercise session. The lipid profile [triglycerides (TG), very low-density lipoprotein (VLDL), high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol, TG/HDL-C ratio and total cholesterol) was determined at rest, immediately after exercise and 1 h after exercise bouts. Results The time to exhaustion was lower in the low CHO condition compared with the control and high CHO condition (3 center dot 59 +/- 0 center dot 72; 2 center dot 91 +/- 0 center dot 56; and 4 center dot 26 +/- 0 center dot 69 min; P < 0 center dot 05). The energy expenditure (control: 251 center dot 1 +/- 56 center dot 0 kJ; low CHO: 215 center dot 2 +/- 28 center dot 6 kJ; and high CHO: 310 center dot 4 +/- 64 center dot 9 kJ) was significantly different between the low and high CHO conditions (P < 0 center dot 05). There were no significant changes in the lipid profile for any of the experimental conditions (control, low and high; P < 0 center dot 05). Glucose and insulin levels did not show time-dependent changes in any of the conditions (P > 0 center dot 05). Conclusions These results indicate that a supramaximal exercise session has no significant effects on lipid metabolism.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent advances in vacuum sciences and applications are reviewed. Novel optical interferometer cavity devices enable pressure measurements with ppm accuracy. The innovative dynamic vacuum standard allows for pressure measurements with temporal resolution of 2 ms. Vacuum issues in the construction of huge ultra-high vacuum devices worldwide are reviewed. Recent advances in surface science and thin films include new phenomena observed in electron transport near solid surfaces as well as novel results on the properties of carbon nanomaterials. Precise techniques for surface and thin-film characterization have been applied in the conservation technology of cultural heritage objects and recent advances in the characterization of biointerfaces are presented. The combination of various vacuum and atmospheric-pressure techniques enables an insight into the complex phenomena of protein and other biomolecule conformations on solid surfaces. Studying these phenomena at solid-liquid interfaces is regarded as the main issue in the development of alternative techniques for drug delivery, tissue engineering and thus the development of innovative techniques for curing cancer and cardiovascular diseases. A review on recent advances in plasma medicine is presented as well as novel hypotheses on cell apoptosis upon treatment with gaseous plasma. Finally, recent advances in plasma nanoscience are illustrated with several examples and a roadmap for future activities is presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: In the present work we investigated the in vitro effect of cis-4-decenoic acid, the pathognomonic metabolite of medium-chain acyl-CoA dehydrogenase deficiency, on various parameters of bioenergetic homeostasis in rat brain mitochondria. Main methods: Respiratory parameters determined by oxygen consumption were evaluated, as well as membrane potential, NAD(P)H content, swelling and cytochrome c release in mitochondrial preparations from rat brain, using glutamate plus malate or succinate as substrates. The activities of citric acid cycle enzymes were also assessed. Key findings: cis-4-decenoic acid markedly increased state 4 respiration, whereas state 3 respiration and the respiratory control ratio were decreased. The ADP/O ratio, the mitochondrial membrane potential, the matrix NAD(P)H levels and aconitase activity were also diminished by cis-4-decenoic acid. These data indicate that this fatty acid acts as an uncoupler of oxidative phosphorylation and as a metabolic inhibitor. cis-4-decenoic acid also provoked a marked mitochondrial swelling when either KCl or sucrose was used in the incubation medium and also induced cytochrome c release from mitochondria, suggesting a non-selective permeabilization of the inner mitochondria! membrane. Significance: It is therefore presumed that impairment of mitochondrial homeostasis provoked by cis-4-decenoic acid may be involved in the brain dysfunction observed in medium-chain acyl-CoA dehydrogenase deficient patients. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Con lo sviluppo di sorgenti capaci di sostenere scariche di non equilibrio a pressione atmosferica è nato un notevole interesse per le applicazioni biomediche del plasma, data la generazione nella scarica di una varietà di agenti efficaci in più ambiti. I plasmi di questo tipo, caratterizzati principalmente da una temperatura macroscopica vicina a quella ambiente, sono infatti già utilizzati, ad esempio, per la sterilizzazione, per il trattamento di polimeri per migliorarne la biocompatibilità, e per l’accelerazione del processo di coagulazione del sangue. In questo lavoro verrà presentata un’altra possibilità applicativa, sempre nel settore della plasma medicine, ovvero l’utilizzo dei plasmi per il trattamento di cellule cancerose, che sta avendo un particolare successo a causa dei risultati ottenuti dai vari gruppi di ricerca che sottintendono un suo possibile futuro nel trattamento di neoplasie. Verrà presentata una breve introduzione alla fisica del plasma, mostrando alcuni parametri che caratterizzano questo stato della materia, concentrandosi in particolare sui plasmi non termici o di non equilibrio, per poi passare al processo di ionizzazione del gas. Nel secondo capitolo sono approfondite due sorgenti per la generazione di plasmi non termici, la scarica a barriera dielettrica e il plasma jet. Il terzo capitolo fornisce una preliminare spiegazione degli agenti generati nella scarica e il rapporto che hanno con la materia con cui interagiscono. L’ultimo capitolo è il fulcro della ricerca, e comprende risultati ottenuti negli ultimi anni da vari gruppi di ricerca di molte nazionalità, e una breve parte riguardante la sperimentazione originale svolta anche in mia presenza dal gruppo di ricerca del Dipartimento di Ingegneria dell’Energia Elettrica e dell’Informazione “Guglielmo Marconi”, rappresentato principalmente dal professor Carlo Angelo Borghi e dal professor Gabriele Neretti.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Platelet concentrates for topical and infiltrative use - commonly termed Platetet-Rich Plasma (PRP) or Platelet-Rich Fibrin (PRF) - are used or tested as surgical adjuvants or regenerative medicine preparations in most medical fields, particularly in sports medicine and orthopaedic surgery. Even if these products offer interesting therapeutic perspectives, their clinical relevance is largely debated, as the literature on the topic is often confused and contradictory. The long history of these products was always associated with confusions, mostly related to the lack of consensual terminology, characterization and classification of the many products that were tested in the last 40 years. The current consensus is based on a simple classification system dividing the many products in 4 main families, based on their fibrin architecture and cell content: Pure Platelet-Rich Plasma (P-PRP), such as the PRGF-Endoret technique; Leukocyte- and Platelet-Rich Plasma (LPRP), such as Biomet GPS system; Pure Platelet-Rich Fibrin (P-PRF), such as Fibrinet; Leukocyte- and Platelet-Rich Fibrin (L-PRF), such as Intra-Spin L-PRF. The 4 main families of products present different biological signatures and mechanisms, and obvious differences for clinical applications. This classification serves as a basis for further investigations of the effects of these products. Perspectives of evolutions of this classification and terminology are also discussed, particularly concerning the impact of the cell content, preservation and activation on these products in sports medicine and orthopaedics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Severe outcomes have been described for both Plasmodium falciparum and P. vivax infections. The identification of sensitive and reliable markers of disease severity is fundamental to improving patient care. An intense pro-inflammatory response with oxidative stress and production of reactive oxygen species is present in malaria. Inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha) and antioxidant agents such as superoxide dismutase-1 (SOD-1) are likely candidate biomarkers for disease severity. Here we tested whether plasma levels of SOD-1 could serve as a biomarker of severe vivax malaria. Methodology/Principal Findings: Plasma samples were obtained from residents of the Brazilian Amazon with a high risk for P. vivax transmission. Malaria diagnosis was made by both microscopy and nested PCR. A total of 219 individuals were enrolled: non-infected volunteers (n = 90) and individuals with vivax malaria: asymptomatic (n = 60), mild (n = 50) and severe infection (n = 19). SOD-1 was directly associated with parasitaemia, plasma creatinine and alanine amino-transaminase levels, while TNF-alpha correlated only with the later enzyme. The predictive power of SOD-1 and TNF-alpha levels was compared. SOD-1 protein levels were more effective at predicting vivax malaria severity than TNF-alpha. For discrimination of mild infection, elevated SOD-1 levels showed greater sensitivity than TNF-alpha (76% vs. 30% respectively; p < 0.0001), with higher specificity (100% vs. 97%; p < 0.0001). In predicting severe vivax malaria, SOD-1 levels exhibited higher sensitivity than TNF-alpha (80% vs. 56%, respectively; p < 0.0001; likelihood ratio: 7.45 vs. 3.14; p, 0.0001). Neither SOD-1 nor TNF-alpha could discriminate P. vivax infections from those caused by P. falciparum. Conclusion: SOD-1 is a powerful predictor of disease severity in individuals with different clinical presentations of vivax malaria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free fatty acids (FFAs) have been shown to produce alteration of heart rate variability (HRV) in healthy and diabetic individuals. Changes in HRV have been described in septic patients and in those with hyperglycemia and elevated plasma FFA levels. We studied if sepsis-induced heart damage and HRV alteration are associated with plasma FFA levels in patients. Thirty-one patients with sepsis were included. The patients were divided into two groups: survivors(n = 12) and nonsurvivors (n = 19). The following associations were investigated: (a) troponin I elevation and HRV reduction and (b) clinical evolution and HRV index, plasma troponin, and plasma FFA levels. Initial measurements of C-reactive protein and gravity Acute Physiology and Chronic Health Evaluation scores were similar in both groups. Overall, an increase in plasma troponin level was related to increased mortality risk. From the first day of study, the nonsurvivor group presented a reduced left ventricular stroke work systolic index and a reduced low frequency (LF) that is one of HRV indexes. The correlation coefficient for LF values and troponin was r(2) = 0.75 (P < 0.05). All patients presented elevated plasma FFA levels on the first day of the study (5.11 +/- 0.53 mg/mL), and this elevation was even greater in the nonsurvivor group compared with the survivors (6.88 +/- 0.13 vs. 3.85 +/- 0.48 mg/mL, respectively; P < 0.05). Cardiac damage was confirmed by measurement of plasma troponin I and histological analysis. Heart dysfunction was determined by left ventricular stroke work systolic index and HRV index in nonsurvivor patients. A relationship was found between plasma FFA levels, LFnu index, troponin levels, and histological changes. Plasma FFA levels emerged as possible cause of heart damage in sepsis.