998 resultados para Plantar pressure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Plantar fasciitis is the third most frequent injury in runners. Despite its high prevalence, its pathogenesis remains inconclusive. The literature reports overload as the basic mechanism for its development. However, the way that these plantar loads are distributed on the foot surface of runners with plantar fasciitis and the effects of pain on this mechanical factor has not yet been investigated. Therefore, the aim of this study was to evaluate and compare the plantar pressure distributions during running in runners with symptom or history of plantar fasciitis and runners without the disease. Methods: Forty-five recreational runners with plantar fasciitis (30 symptomatic and 15 with previous history of the disease) and 60 runners without plantar fasciitis (control group) were evaluated. Pain was assessed by a visual analogue scale. All runners were evaluated by means of the Pedar system insoles during running forty meters at a speed of 12(5%) km/h, using standard sport footwear. Two-way ANOVAS were employed to investigate the main and interaction effects between groups and plantar areas. Findings: No interaction effects were found for any of the investigated variables: peak pressure (P=0.61), contact area (P=0.38), contact time (P=0.91), and the pressure-time integral (P=0.50). Interpretation: These findings indicated that the patterns of plantar pressure distribution were not affected in recreational runners with plantar fasciitis when compared to control runners. Pain also did not interfere with the dynamic patterns of the plantar pressure distributions. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The type of surface used for running can influence the load that the locomotor apparatus will absorb and the load distribution could be related to the incidence of chronic injuries. As there is no consensus on how the locomotor apparatus adapts to loads originating from running Surfaces with different compliance, the objective of this study was to investigate how loads are distributed over the plantar surface while running on natural grass and on a rigid surface-asphalt. Forty-four adult runners with 4 3 years of running experience were evaluated while running at 12 km/h for 40 m wearing standardised running shoes and Pedar insoles (Novel). Peak pressure, contact time and contact area were measured in six regions: lateral, central and medial rearfoot, midfoot, lateral and media] forefoot. The Surfaces and regions were compared by three ANOVAS (2 x 6). Asphalt and natural grass were statistically different in all variables. Higher peak pressures were observed on asphalt at the central (p < 0.001) [grass: 303.8(66.7) kPa; asphalt: 342.3(76.3) kPa] and lateral rearfoot (p < 0.001) [grass: 312.7(75.8) kPa: asphalt: 350.9(98.3) kPa] and lateral forefoot (p < 0.001) [grass: 221.5(42.9) kPa asphalt: 245.3(55.5) kPa]. For natural grass, contact time and contact area were significantly greater at the central rearfoot (p < 0.001). These results suggest that natural grass may be a Surface that provokes lighter loads on the rearfoot and forefoot in recreational runners. (C) 2008 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study compared the ground reaction forces (GRF) and plantar pressures between unloaded and occasional loaded gait. The GRF and plantar pressures of 60 participants were recorded during unloaded gait and occasional loaded gait (wearing a backpack that raised their body mass index to 30); this load criterion was adopted because is considered potentially harmful in permanent loaded gait (obese people). The results indicate an overall increase (absolute values) of GRF and plantar pressures during occasional loaded gait (p < 0.05); also, higher normalized (by total weight) values in the medial midfoot and toes, and lower values in the lateral rearfoot region were observed. During loaded gait the magnitude of the vertical GRF (impact and thrust maximum) decreased and the shear forces increased more than did the proportion of the load (normalized values). These data suggest a different pattern of GRF and plantar pressure distribution during occasional loaded compared to unloaded gait.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O uso da tecnologia tem crescido nas últimas décadas nas mais diversas áreas, seja na indústria ou no dia-a-dia, e é cada vez mais evidente os benefícios que traz. No desporto não é diferente. Cada dia surgem novos desenvolvimentos objetivando a melhoria do desempenho dos praticantes de atividades físicas, possibilitando atingir resultados nunca antes pensados. Além disto, a utilização da tecnologia no desporto permite a obtenção de dados biomecânicos que podem ser utilizados tanto no treinamento quando na melhoria da qualidade de vida dos atletas auxiliando na prevenção de lesões, por exemplo. Deste modo, o presente projeto se aplica na área do desporto, nomeadamente, na modalidade do surfe, onde a ausência de trabalhos científicos ainda é elevada, aliando a tecnologia eletrônica ao desporto para quantificar informações até então desconhecidas. Três fatores básicos de desempenho foram levantados, sendo eles: equilíbrio, posicionamento dos pés e movimentação da prancha de surfe. Estes fatores levaram ao desenvolvimento de um sistema capaz de medi-los dinamicamente através da medição das forças plantares e da rotação da prancha de surfe. Além da medição dos fatores, o sistema é capaz de armazenar os dados adquiridos localmente através de um cartão de memória, para posterior análise; e também enviá-los através de uma comunicação sem fio, permitindo a visualização do centro de pressões plantares; dos ângulos de rotação da prancha de surfe; e da ativação dos sensores; em tempo real. O dispositivo consiste em um sistema eletrônico embarcado composto por um microcontrolador ATMEGA1280; um circuito de aquisição e condicionamento de sinal analógico; uma central inercial; um módulo de comunicação sem fio RN131; e um conjunto de sensores de força Flexiforce. O firmware embarcado foi desenvolvido em linguagem C. O software Matlab foi utilizado para receção de dados e visualização em tempo real. Os testes realizados demostraram que o funcionamento do sistema atende aos requisitos propostos, fornecendo informação acerca do equilíbrio, através do centro de pressões; do posicionamento dos pés, através da distribuição das pressões plantares; e do movimento da prancha nos eixos pitch e roll, através da central inercial. O erro médio de medição de força verificado foi de -0.0012 ± 0.0064 N, enquanto a mínima distância alcançada na transmissão sem fios foi de 100 m. A potência medida do sistema foi de 330 mW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to compare foot plantar pressure distribution while jogging and running in highly trained adolescent runners. Eleven participants performed two constant-velocity running trials either at jogging (11.2 ± 0.9 km/h) or running (17.8 ± 1.4 km/h) pace on a treadmill. Contact area (CA in cm(2)), maximum force (F(max) in N), peak pressure (PP in kPa), contact time (CT in ms), and relative load (force time integral in each individual region divided by the force time integral for the total plantar foot surface, in %) were measured in nine regions of the right foot using an in-shoe plantar pressure device. Under the whole foot, CA, F(max) and PP were lower in jogging than in running (-1.2% [p<0.05], -12.3% [p<0.001] and -15.1% [p<0.01] respectively) whereas CT was higher (+20.1%; p<0.001). Interestingly, we found an increase in relative load under the medial and central forefoot regions while jogging (+6.7% and +3.7%, respectively; [p<0.05]), while the relative load under the lesser toes (-8.4%; p<0.05) was reduced. In order to prevent overloading of the metatarsals in adolescent runners, excessive mileage at jogging pace should be avoided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXT: Fatigue-induced alterations in foot mechanics may lead to structural overload and injury. OBJECTIVES: To investigate how a high-intensity running exercise to exhaustion modifies ankle plantar-flexor and dorsiflexor strength and fatigability, as well as plantar-pressure distribution in adolescent runners. DESIGN: Controlled laboratory study. SETTING: Academy research laboratory. PATIENTS OR OTHER PARTICIPANTS: Eleven male adolescent distance runners (age = 16.9 ± 2.0 years, height = 170.6 ± 10.9 cm, mass = 54.6 ± 8.6 kg) were tested. INTERVENTION(S): All participants performed an exhausting run on a treadmill. An isokinetic plantar-flexor and dorsiflexor maximal-strength test and a fatigue test were performed before and after the exhausting run. Plantar-pressure distribution was assessed at the beginning and end of the exhausting run. MAIN OUTCOME MEASURE(S): We recorded plantar-flexor and dorsiflexor peak torques and calculated the fatigue index. Plantar-pressure measurements were recorded 1 minute after the start of the run and before exhaustion. Plantar variables (ie, mean area, contact time, mean pressure, relative load) were determined for 9 selected regions. RESULTS: Isokinetic peak torques were similar before and after the run in both muscle groups, whereas the fatigue index increased in plantar flexion (28.1%; P = .01) but not in dorsiflexion. For the whole foot, mean pressure decreased from 1 minute to the end (-3.4%; P = .003); however, mean area (9.5%; P = .005) and relative load (7.2%; P = .009) increased under the medial midfoot, and contact time increased under the central forefoot (8.3%; P = .01) and the lesser toes (8.9%; P = .008). CONCLUSIONS: Fatigue resistance in the plantar flexors declined after a high-intensity running bout performed by adolescent male distance runners. This phenomenon was associated with increased loading under the medial arch in the fatigued state but without any excessive pronation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background : This study aimed to use plantar pressure analysis in relatively long-distance walking for objective outcome evaluation of ankle osteoarthritis treatments, i.e., ankle arthrodesis and total ankle replacement.Methods : Forty-seven subjects in four groups: three patient groups and controls, participated in the study. Each subject walked twice in 50-m trials. Plantar pressure under the pathological foot was measured using pressure insoles. Six parameters: initial contact time, terminal contact time, maximum force time, peak pressure time, maximum force and peak pressure were calculated and averaged over trials in ten regions of foot. The parameters in each region were compared between patient groups and controls and their effect size was estimated. Besides, the correlations between pressure parameters and clinical scales were calculated.Findings : We observed based on temporal parameters that patients postpone the heel-off event, when high force in forefoot and high ankle moment happens. Also based on maximum force and peak pressure, the patients apply smoothened maximum forces on the affected foot. In ten regions, some parameters showed improvements after total ankle replacement, some showed alteration of foot function after ankle arthrodesis and some others showed still abnormality after both surgical treatments. These parameters showed also significant correlation with clinical scales in at least two regions of foot.Interpretation : Plantar pressure parameters in relatively long-distance trials showed to be strong tools for outcome evaluation of ankle osteoarthritis treatments. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to use the plantar pressure insole for estimating the three-dimensional ground reaction force (GRF) as well as the frictional torque (T(F)) during walking. Eleven subjects, six healthy and five patients with ankle disease participated in the study while wearing pressure insoles during several walking trials on a force-plate. The plantar pressure distribution was analyzed and 10 principal components of 24 regional pressure values with the stance time percentage (STP) were considered for GRF and T(F) estimation. Both linear and non-linear approximators were used for estimating the GRF and T(F) based on two learning strategies using intra-subject and inter-subjects data. The RMS error and the correlation coefficient between the approximators and the actual patterns obtained from force-plate were calculated. Our results showed better performance for non-linear approximation especially when the STP was considered as input. The least errors were observed for vertical force (4%) and anterior-posterior force (7.3%), while the medial-lateral force (11.3%) and frictional torque (14.7%) had higher errors. The result obtained for the patients showed higher error; nevertheless, when the data of the same patient were used for learning, the results were improved and in general slight differences with healthy subjects were observed. In conclusion, this study showed that ambulatory pressure insole with data normalization, an optimal choice of inputs and a well-trained nonlinear mapping function can estimate efficiently the three-dimensional ground reaction force and frictional torque in consecutive gait cycle without requiring a force-plate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Ankle arthrodesis (AD) and total ankle replacement (TAR) are typical treatments for ankle osteoarthritis (AO). Despite clinical interest, there is a lack of their outcome evaluation using objective criteria. Gait analysis and plantar pressure assessment are appropriate to detect pathologies in orthopaedics but they are mostly used in lab with few gait cycles. In this study, we propose an ambulatory device based on inertial and plantar pressure sensors to compare the gait during long-distance trials between healthy subjects (H) and patients with AO or treated by AD and TAR. Methods: Our study included four groups: 11 patients with AO, 9 treated by TAR, 7 treated by AD and 6 control subjects. An ambulatory system (Physilog®, CH) was used for gait analysis; plantar pressure measurements were done using a portable insole (Pedar®-X, DE). The subjects were asked to walk 50 meters in two trials. Mean value and coefficient of variation of spatio-temporal gait parameters were calculated for each trial. Pressure distribution was analyzed in ten subregions of foot. All parameters were compared among the four groups using multi-level model-based statistical analysis. Results: Significant difference (p <0.05) with control was noticed for AO patients in maximum force in medial hindfoot and forefoot and in central forefoot. These differences were no longer significant in TAR and AD groups. Cadence and speed of all pathologic groups showed significant difference with control. Both treatments showed a significant improvement in double support and stance. TAR decreased variability in speed, stride length and knee ROM. Conclusions: In spite of a small sample size, this study showed that ankle function after AO treatments can be evaluated objectively based on plantar pressure and spatio-temporal gait parameters measured during unconstrained walking outside the lab. The combination of these two ambulatory techniques provides a promising way to evaluate foot function in clinics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to compare foot plantar pressure distribution while jogging and running in highly trained adolescent runners. Eleven participants performed two constant-velocity running trials either at jogging (11.2 ± 0.9 km/h) or running (17.8 ± 1.4 km/h) pace on a treadmill. Contact area (CA in cm(2)), maximum force (F(max) in N), peak pressure (PP in kPa), contact time (CT in ms), and relative load (force time integral in each individual region divided by the force time integral for the total plantar foot surface, in %) were measured in nine regions of the right foot using an in-shoe plantar pressure device. Under the whole foot, CA, F(max) and PP were lower in jogging than in running (-1.2% [p<0.05], -12.3% [p<0.001] and -15.1% [p<0.01] respectively) whereas CT was higher (+20.1%; p<0.001). Interestingly, we found an increase in relative load under the medial and central forefoot regions while jogging (+6.7% and +3.7%, respectively; [p<0.05]), while the relative load under the lesser toes (-8.4%; p<0.05) was reduced. In order to prevent overloading of the metatarsals in adolescent runners, excessive mileage at jogging pace should be avoided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to evaluate and correlate the vascular, sensory and motor components related to the plantar surface in individuals with diabetic peripheral neuropathy. 68 patients were categorized into two groups: 28 in the neuropathic group and 40 in the control group. In each patient, we assessed: circulation and peripheral perfusion of the lower limbs; somatosensory sensitivity; ankle muscle strength; and pressure on the plantar surface in static, dynamic and gait states. We used the Mann-Whitney test and analysis of variance (ANOVA and MANOVA) for comparison between groups, and performed Pearson and Spearman linear correlations amongst the variables (P < 0.05). The somatosensory sensitivity, peripheral circulation and ankle muscle strength were reduced in the neuropathic group. In full peak plantar pressures, no differences were seen between groups, but differences did appear when the foot surface was divided into regions (forefoot, midfoot and hindfoot). In the static condition, the plantar surface area was greater in the neuropathic group. In the dynamic state, peak pressures in the neuropathic group, were higher in the forefoot and lower in the hindfoot, as well as lower in the hindfoot during gait. There were positive or negative correlations between the sensitivity deficit, dorsal ankle flexor strength, plantar surface area, and peak pressure by plantar region. The sensitivity deficit contributed to the increased plantar surface area.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Universidade Estadual de Campinas . Faculdade de Educação Física

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: Diabetic neuropathy leads to progressive loss of sensation, lower-limb distal muscle atrophy, autonomic impairment, and gait alterations that overload feet. This overload has been associated with plantar ulcers even with consistent daily use of shoes. We sought to investigate and compare the influence of diabetic neuropathy and plantar ulcers in the clinical history of diabetic neuropathic patients on plantar sensitivity, symptoms, and plantar pressure distribution during gait while patients wore their everyday shoes. Methods: Patients were categorized into three groups: a control group (CG; n = 15), diabetic patients with a history of neuropathic ulceration (DUG; n = 8), and diabetic patients without a history of ulceration (DG; n = 10). Plantar pressure variables were measured by Pedar System shoe insoles in five plantar regions during gait while patients wore their own shoes. Results: No statistical difference between neuropathic patients with and without a history of plantar ulcers was found in relation to symptoms, tactile sensitivity, and duration of diabetes. Diabetic patients without ulceration presented the lowest pressure-time integral under the heel (72.1 +/- 16.1 kPa x sec; P=.0456). Diabetic patients with a history of ulceration presented a higher pressure-time integral at the midfoot compared to patients in the control group (59.6 +/- 23.6 kPa x sec x 45.8 +/- 10.4 kPa x sec; P = .099), and at the lateral forefoot compared to diabetic patients without ulceration (70.9 +/- 17.7 kPa sec x 113.2 +/- 61.1 kPa x sec, P = .0193). Diabetic patients with ulceration also presented the lowest weight load under the hallux (0.06 +/- 0.02%, P = .0042). Conclusions: Although presenting a larger midfoot area, diabetic neuropathic patients presented greater pressure-time integrals and relative loads over this region. Diabetic patients with ulceration presented an altered dynamic plantar pressure pattern characterized by overload even when wearing daily shoes. Overload associated with a clinical history of plantar ulcers indicates future appearance of plantar ulcers. (J Am Podiatr Med Assoc 99(4): 285-294, 2009)