1000 resultados para Physical Derivation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Waves breaking on the seaward rim of a coral reef generate a flow of water from the exposed side of the reef to the sheltered side and/or to either channels through the reef-rim or lower sections of the latter. This wave-generated flow is driven by the water surface gradient resulting from the wave set-up created by the breaking waves. This paper reviews previous approaches to modelling wave-generated flows across coral reefs and discusses the influence of reef morphology and roughness upon these flows. Laboratory measurements upon a two-dimensional horizontal reef platform with a steep reef face provide the basis for extending a previous theoretical analysis for wave set-up on a reef in the absence of a flow [Gourlay, M.R., 1996b. Wave set-up on coral reefs. 2. Set-up on reefs with various profiles. Coastal Engineering 28, 1755] to include the interaction between a unidirectional flow and the wave set-up. The laboratory model results are then used to demonstrate that there are two basic reef-top flow regimes-reef-top control and reef-rim control. Using open channel flow theory, analytical relationships are derived for the reef-top current velocity in terms of the offreef wave conditions, the reef-top water depth and the physical characteristics of the reef-top topography. The wave set-up and wave-generated flow relationships are found to predict experimental values with reasonable accuracy in most cases. The analytical relationships are used to investigate wave-generated flows into a boat harbour channel on Heron Reef in the southern Great Barrier Reef. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The quality of ultrasound computed tomography imaging is primarily determined by the accuracy of ultrasound transit time measurement. A major problem in analysis is the overlap of signals making it difficult to detect the correct transit time. The current standard is to apply a matched-filtering approach to the input and output signals. This study compares the matched-filtering technique with active set deconvolution to derive a transit time spectrum from a coded excitation chirp signal and the measured output signal. The ultrasound wave travels in a direct and a reflected path to the receiver, resulting in an overlap in the recorded output signal. The matched-filtering and deconvolution techniques were applied to determine the transit times associated with the two signal paths. Both techniques were able to detect the two different transit times; while matched-filtering has a better accuracy (0.13 μs vs. 0.18 μs standard deviation), deconvolution has a 3.5 times improved side-lobe to main-lobe ratio. A higher side-lobe suppression is important to further improve image fidelity. These results suggest that a future combination of both techniques would provide improved signal detection and hence improved image fidelity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fujikawa's method of evaluating the supercurrent and the superconformal current anomalies, using the heat-kernel regularization scheme, is extended to theories with gauge invariance, in particular, to the off-shell N=1 supersymmetric Yang-Mills (SSYM) theory. The Jacobians of supersymmetry and superconformal transformations are finite. Although the gauge-fixing term is not supersymmetric and the regularization scheme is not manifestly supersymmetric, we find that the regularized Jacobians are gauge invariant and finite and they can be expressed in such a way that there is no one-loop supercurrent anomaly for the N=1 SSYM theory. The superconformal anomaly is nonzero and the anomaly agrees with a similar result obtained using other methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fujikawa's method of evaluating the anomalies is extended to the on-shell supersymmetric (SUSY) theories. The supercurrent and the superconformal current anomalies are evaluated for the Wess-Zumino model using the background-field formulation and heat-kernel regularization. We find that the regularized Jacobians for SUSY and superconformal transformations are finite. The results can be expressed in a form such that there is no supercurrent anomaly but a finite nonzero superconformal anomaly, in agreement with similar results obtained using other methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To develop real-time simulations of wind instruments, digital waveguides filters can be used as an efficient representation of the air column. Many aerophones are shaped as horns which can be approximated using conical sections. Therefore the derivation of conical waveguide filters is of special interest. When these filters are used in combination with a generalized reed excitation, several classes of wind instruments can be simulated. In this paper we present the methods for transforming a continuous description of conical tube segments to a discrete filter representation. The coupling of the reed model with the conical waveguide and a simplified model of the termination at the open end are described in the same way. It turns out that the complete lossless conical waveguide requires only one type of filter.Furthermore, we developed a digital reed excitation model, which is purely based on numerical integration methods, i.e., without the use of a look-up table.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present new results from SEPPCoN, a Survey of Ensemble Physical Properties of Cometary Nuclei. This project is currently surveying 100 Jupiter-family comets (JFCs) to measure the mid-infrared thermal emission and visible reflected sunlight of the nuclei. The scientific goal is to determine the distributions of radius, geometric albedo, thermal inertia, axial ratio, and color among the JFC nuclei. In the past we have presented results from the completed mid-IR observations of our sample [1]; here we present preliminary results from ongoing, broadband visible-wavelength observations of nuclei obtained from a variety of ground-based facilities (Mauna Kea, Cerro Pachon, La Silla, La Palma, Apache Point, Table Mtn., and Palomar Mtn.), including contributions from the Near Earth Asteroid Telescope project (NEAT) archive. The nuclei were observed at high heliocentric distance (usually over 4 AU) and so many comets show either no or little contamination from dust coma. While several nuclei have been observed as snapshots, we have multiepoch photometry for many of our targets. With our datasets we are building a large database of photometry, and such a database is essential to the derivation of albedo and shape of a large number of nuclei, and to the understanding of biases in the survey. Support for this work was provided by NSF and the NASA Planetary Astronomy program. Reference: [1] Fernandez, Y.R., et al. 2007, BAAS 39, 827.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since no physical system can ever be completely isolated from its environment, the study of open quantum systems is pivotal to reliably and accurately control complex quantum systems. In practice, reliability of the control field needs to be confirmed via certification of the target evolution while accuracy requires the derivation of high-fidelity control schemes in the presence of decoherence. In the first part of this thesis an algebraic framework is presented that allows to determine the minimal requirements on the unique characterisation of arbitrary unitary gates in open quantum systems, independent on the particular physical implementation of the employed quantum device. To this end, a set of theorems is devised that can be used to assess whether a given set of input states on a quantum channel is sufficient to judge whether a desired unitary gate is realised. This allows to determine the minimal input for such a task, which proves to be, quite remarkably, independent of system size. These results allow to elucidate the fundamental limits regarding certification and tomography of open quantum systems. The combination of these insights with state-of-the-art Monte Carlo process certification techniques permits a significant improvement of the scaling when certifying arbitrary unitary gates. This improvement is not only restricted to quantum information devices where the basic information carrier is the qubit but it also extends to systems where the fundamental informational entities can be of arbitary dimensionality, the so-called qudits. The second part of this thesis concerns the impact of these findings from the point of view of Optimal Control Theory (OCT). OCT for quantum systems utilises concepts from engineering such as feedback and optimisation to engineer constructive and destructive interferences in order to steer a physical process in a desired direction. It turns out that the aforementioned mathematical findings allow to deduce novel optimisation functionals that significantly reduce not only the required memory for numerical control algorithms but also the total CPU time required to obtain a certain fidelity for the optimised process. The thesis concludes by discussing two problems of fundamental interest in quantum information processing from the point of view of optimal control - the preparation of pure states and the implementation of unitary gates in open quantum systems. For both cases specific physical examples are considered: for the former the vibrational cooling of molecules via optical pumping and for the latter a superconducting phase qudit implementation. In particular, it is illustrated how features of the environment can be exploited to reach the desired targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The congruential rule advanced by Graves for polarization basis transformation of the radar backscatter matrix is now often misinterpreted as an example of consimilarity transformation. However, consimilarity transformations imply a physically unrealistic antilinear time-reversal operation. This is just one of the approaches found in literature to the description of transformations where the role of conjugation has been misunderstood. In this paper, the different approaches are examined in particular in respect to the role of conjugation. In order to justify and correctly derive the congruential rule for polarization basis transformation and properly place the role of conjugation, the origin of the problem is traced back to the derivation of the antenna height from the transmitted field. In fact, careful consideration of the role played by the Green’s dyadic operator relating the antenna height to the transmitted field shows that, under general unitary basis transformation, it is not justified to assume a scalar relationship between them. Invariance of the voltage equation shows that antenna states and wave states must in fact lie in dual spaces, a distinction not captured in conventional Jones vector formalism. Introducing spinor formalism, and with the use of an alternate spin frame for the transmitted field a mathematically consistent implementation of the directional wave formalism is obtained. Examples are given comparing the wider generality of the congruential rule in both active and passive transformations with the consimilarity rule.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A derivation from first principles is given of the energy-time uncertainty relation in quantum mechanics. A canonical transformation is made in classical mechanics to a new canonical momentum, which is energy E, and a new canonical coordinate T, which is called tempus, conjugate to the energy. Tempus T, the canonical coordinate conjugate to the energy, is conceptually different from the time t in which the system evolves. The Poisson bracket is a canonical invariant, so that energy and tempus satisfy the same Poisson bracket as do p and q. When the system is quantized, we find the energy-time uncertainty relation DELTAEDELTAT greater-than-or-equal-to HBAR/2. For a conservative system the average of the tempus operator T is the time t plus a constant. For a free particle and a particle acted on by a constant force, the tempus operators are constructed explicitly, and the energy-time uncertainty relation is explicitly verified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediment core logs from six sediment cores in the Labrador Sea show millennial-scale climate variability during the last glacial by recording all Heinrich events and several major Dansgaard-Oeschger cycles. The same millennial-scale climate change is documented for surface-water d18O records of Neogloboquadrina pachyderma (left coiled); hence the surface-water d18O record can be derived from sediment core logging by means of multiple linear regression, providing a paleoclimate proxy record at very high temporal resolution (70 yrs). For the Labrador Sea, sediment core logs contain important information about deep-water current velocities and also reflect the variable input of IRD from different sources as inferred from grain-size analysis, benthic d18O, the relation of density and p-wave velocity, and magnetic susceptibility. For the last glacial, faster deep-water currents which correspond to highs in sediment physical properties, occurred during iceberg discharge and lasted for a several centuries to a few millennia. Those enhanced currents might have contributed to increased production of intermediate waters during times of reduced production of North Atlantic Deep Water. Hudson Strait might have acted as a major supplier of detrital carbonate only during lowered sea level (greater ice extent). During coldest atmospheric temperatures over Greenland, deep-water currents increased during iceberg discharge in the Labrador Sea, then surface water freshened shortly after, while the abrupt atmospheric temperature rise happened after a larger time lag of >=1 kyr. The correlation implies a strong link and common forcing for atmosphere, sea surface, and deep water during the last glacial at millennial time scales but decoupling at orbital time scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have reanalyzed the porosity, bulk density, and seismic velocity information collected from continental rise Sites 1095, 1096, and 1101 during the drilling of Ocean Drilling Program (ODP) Leg 178 (Fig. F1). The purpose is to provide a comprehensive composite digital set of data readily available for future studies aimed at well-seismic correlation. The work originates from the occurrence of overlapping sets of physical parameters and acoustic velocity collected by different methods (downhole logging, core logging, laboratory determination, and derivation from seismic data) and from different holes at the same site. These data do not always provide the same information because of difficulties encountered at each specific hole or methodological differences. In addition, a basic correlation between these parameters and onsite multichannel seismic (MCS) data is presented.