988 resultados para Photovoltaic Applications
Resumo:
Organic solar cells based on bulk heterojunction between a conductive polymer and a carbon nanostructure offer potential advantages compared to conventional inorganic cells. Low cost, light weight, flexibility and high peak power per unit weight are all features that can be considered a reality for organic photovoltaics. Although polymer/carbon nanotubes solar cells have been proposed, only low power conversion efficiencies have been reached without addressing the mechanisms responsible for this poor performance. The purpose of this work is therefore to investigate the basic interaction between carbon nanotubes and poly(3-hexylthiophene) in order to demonstrate how this interaction affects the performance of photovoltaic devices. The outcomes of this study are the contributions made to the knowledge of the phenomena explaining the behaviour of electronic devices based on carbon nanotubes and poly(3-hexylthiophene). In this PhD, polymer thin films with the inclusion of uniformly distributed carbon nanotubes were deposited from solution and characterised. The bulk properties of the composites were studied with microscopy and spectroscopy techniques to provide evidence of higher degrees of polymer order when interacting with carbon nanotubes. Although bulk investigation techniques provided useful information about the interaction between the polymer and the nanotubes, clear evidence of the phenomena affecting the heterojunction formed between the two species was investigated at nanoscale. Identifying chirality-driven polymer assisted assembly on the carbon nanotube surface was one of the major achievements of this study. Moreover, the analysis of the electrical behaviour of the heterojunction between the polymer and the nanotube highlighted the charge transfer responsible for the low performance of photovoltaic devices. Polymer and carbon nanotube composite-based devices were fabricated and characterised in order to study their electronic properties. The carbon nanotube introduction in the polymer matrix evidenced a strong electrical conductivity enhancement but also a lower photoconductivity response. Moreover, the extension of pristine polymer device characterisation models to composites based devices evidenced the conduction mechanisms related to nanotubes. Finally, the introduction of carbon nanotubes in the polymer matrix was demonstrated to improve the pristine polymer solar cell performance and the spectral response even though the power conversion efficiency is still too low.
Resumo:
Carbon nanotubes (CNTs), experimentally observed for the first time twenty years ago, have triggered an unprecedented research effort, on the account of their astonishing structural, mechanical and electronic properties. Unfortunately, the current inability in predicting the CNTs’ properties and the difficulty in controlling their position on a substrate are often limiting factors for the application of this material in actual devices. This research aims at the creation of specific methodologies for controlled synthesis of CNTs, leading to effectively employ them in various fields of electronics, e.g. photovoltaics. Focused Ion Beam (FIB) patterning of Si surfaces is here proposed as a means for ordering the assembly of vertical-aligned CNTs. With this technique, substrates with specific nano-structured morphologies have been prepared, enabling a high degree of control over CNTs’ position and size. On these nano-structured substrates, the growth of CNTs has been realized by chemical vapor deposition (CVD), i.e. thermal decomposition of hydrocarbon gases over a heated catalyst. The most common materials used as catalysts in CVD are transition metals like Fe and Ni; however, their presence in the CNT products often results in shortcomings for electronic applications, especially for those based on silicon, being the metallic impurities incompatible with very-large-scale integration (VLSI) technology. In the present work the role of Ge dots as an alternative catalysts for CNTs synthesis on Si substrates has been thoroughly assessed, finding a close connection between the catalytic activity of such material and the CVD conditions, which can affect both size and morphology of the dots. Successful CNT growths from Ge dots have been obtained by CVD at temperatures ranging from 750 to 1000°C, with mixtures of acetylene and hydrogen in an argon carrier gas. The morphology of the Si surface is observed to play a crucial role for the outcome of the CNT synthesis: natural (i.e. chemical etching) and artificial (i.e. FIB patterning, nanoindentation) means of altering this morphology in a controlled way have been then explored to optimize the CNTs yield. All the knowledge acquired in this study has been finally applied to synthesize CNTs on transparent conductive electrodes (indium-tin oxide, ITO, coated glasses), for the creation of a new class of anodes for organic photovoltaics. An accurate procedure has been established which guarantees a controlled inclusion of CNTs on ITO films, preserving their optical and electrical properties. By using this set of conditions, a CNTenhanced electrode has been built, contributing to improve the power conversion efficiency of polymeric solar cells.
Resumo:
In this study we report the molecular design, synthesis, characterization, and photovoltaic properties of a series of diketopyrrolopyrrole (DPP) and dithienothiophene (DTT) based donor-acceptor random copolymers. The six random copolymers are obtained via Stille coupling polymerization using various concentration ratios of donor to acceptor in the conjugated backbone. Bis(trimethylstannyl)thiophene was used as the bridge block to link randomly with the two comonomers 5-(bromothien-2-yl)-2,5-dialkylpyrrolo[3,4-c]pyrrole-1, 4-dione and 2,6-dibromo-3,5-dipentadecyl-dithieno[3,2-b;2′,3′-d] thiophene. The optical properties of these copolymers clearly reveal a change in the absorption band through optimization of the donor-acceptor ratio in the backbone. Additionally, the solution processability of the copolymers is modified through the attachment of different bulky alkyl chains to the lactam N-atoms of the DPP moiety. Applications of the polymers as light-harvesting and electron-donating materials in solar cells, in conjunction with PCBM as acceptor, show power conversion efficiencies (PCEs) of up to 5.02%.
Resumo:
The short‐circuit current density (Jsc) of indium tin oxide (ITO/silicon solar cells has been shown both theoretically and experimentally to be a function of the thickness of the ion beam sputtered ITO layer. These results can be accounted for by computing the optical reflection from the ITO/silicon interface.
Resumo:
Donor-acceptor (D-A) conjugated polymers have attracted a good deal of attention in recent years. In D-A systems, the introduction of electron withdrawing groups reduces E-g by lowering the LUMO levels whereas, the introduction of electron donating groups reduces E-g by raising the HOMO levels. Also, conjugated polymers with desired HOMO and LUMO energy levels could be obtained by the proper selection of donor and acceptor units. Because of this reason, D-A conjugated polymers are emerging as promising materials particularly for polymer light emitting diodes (PLEDs) and polymer solar cells (PSCs). We report the design and synthesis of four new narrow band gap donor-acceptor (D-A) conjugated polymers, PTCNN, PTCNF, PTCNV and PTCNO, containing electron donating 3,4-didodecyloxythiophene and electron accepting cyanovinylene units. The effects of further addition of electron donating and electron withdrawing groups to the repeating unit of a D-A conjugated polymer (PTCNN) on its optical and electrochemical properties are discussed. The studies revealed that the nature of D and A units as well as the extent of alternate D-A structure influences the optical and the electrochemical properties of the polymers. All the polymers are thermally stable up to a temperature of 300 degrees C under nitrogen atmosphere. The electrochemical studies revealed that the polymers possess low-lying HOMO energy levels and low-lying LUMO energy levels. In the UV-Vis absorption study, the polymer films displayed broad absorption in the wavelength region of 400-700 nm. The polymers exhibited low optical band gaps in the range 1.70 - 1.77 eV.
Resumo:
Earth abundant alternative chalcopyrite Cu2CoSnS4 (CCTS) thin films were deposited by a facile sol-gel process onto larger substrates. Temperature dependence of the process control of deposition and desired phase formations was studied in detail. Films were analyzed for complete transformation from amorphous to polycrystalline, with textured structures for stannite phase, as reflected from the X-ray diffraction and with nearly stoichiometric compositions of Cu:Co:Sn:S = 2:0:1:0:1:0:4:0 from EDAX analysis. Morphological investigations revealed that the CCTS films with larger grains, on the order of its thickness, were synthesized at higher temperature of 500 degrees C. The optimal band gap for application in photovoltaics was estimated to be 1.4 eV. Devices with SLG/CCTS/Al geometry were fabricated for real time demonstration of photoconductivity under A.M 1.5 G solar and 1064 rim infrared laser illuminations. A photodetector showed one order current amplification from similar to 1.9 X 10(-6) A in the dark to 2.2 x 10(-5) A and 9.8 X 10(-6) A under A.M 1.5 G illumination and 50 mW cm(-2) IR laser, respectively. Detector sensitivity, responsivity, external quantum efficiency, and gain were estimated as 4.2, 0.12 A/W, 14.74% and 14.77%, respectively, at 50 mW cm(-2) laser illuminations. An ON and OFF ratio of 2.5 proved that CCTS can be considered as a potential absorber in low cost photovoltaics applications.
Resumo:
Photovoltaic energy conversion represents a economically viable technology for realizing collection of the largest energy resource known to the Earth -- the sun. Energy conversion efficiency is the most leveraging factor in the price of energy derived from this process. This thesis focuses on two routes for high efficiency, low cost devices: first, to use Group IV semiconductor alloy wire array bottom cells and epitaxially grown Group III-V compound semiconductor alloy top cells in a tandem configuration, and second, GaP growth on planar Si for heterojunction and tandem cell applications.
Metal catalyzed vapor-liquid-solid grown microwire arrays are an intriguing alternative for wafer-free Si and SiGe materials which can be removed as flexible membranes. Selected area Cu-catalyzed vapor-liquid solid growth of SiGe microwires is achieved using chlorosilane and chlorogermane precursors. The composition can be tuned up to 12% Ge with a simultaneous decrease in the growth rate from 7 to 1 μm/min-1. Significant changes to the morphology were observed, including tapering and faceting on the sidewalls and along the lengths of the wires. Characterization of axial and radial cross sections with transmission electron microscopy revealed no evidence of defects at facet corners and edges, and the tapering is shown to be due to in-situ removal of catalyst material during growth. X-ray diffraction and transmission electron microscopy reveal a Ge-rich crystal at the tip of the wires, strongly suggesting that the Ge incorporation is limited by the crystallization rate.
Tandem Ga1-xInxP/Si microwire array solar cells are a route towards a high efficiency, low cost, flexible, wafer-free solar technology. Realizing tandem Group III-V compound semiconductor/Si wire array devices requires optimization of materials growth and device performance. GaP and Ga1-xInxP layers were grown heteroepitaxially with metalorganic chemical vapor deposition on Si microwire array substrates. The layer morphology and crystalline quality have been studied with scanning electron microscopy and transmission electron microscopy, and they provide a baseline for the growth and characterization of a full device stack. Ultimately, the complexity of the substrates and the prevalence of defects resulted in material without detectable photoluminescence, unsuitable for optoelectronic applications.
Coupled full-field optical and device physics simulations of a Ga0.51In0.49P/Si wire array tandem are used to predict device performance. A 500 nm thick, highly doped "buffer" layer between the bottom cell and tunnel junction is assumed to harbor a high density of lattice mismatch and heteroepitaxial defects. Under simulated AM1.5G illumination, the device structure explored in this work has a simulated efficiency of 23.84% with realistic top cell SRH lifetimes and surface recombination velocities. The relative insensitivity to surface recombination is likely due to optical generation further away from the free surfaces and interfaces of the device structure.
Finally, GaP has been grown free of antiphase domains on Si (112) oriented substrates using metalorganic chemical vapor deposition. Low temperature pulsed nucleation is followed by high temperature continuous growth, yielding smooth, specular thin films. Atomic force microscopy topography mapping showed very smooth surfaces (4-6 Å RMS roughness) with small depressions in the surface. Thin films (~ 50 nm) were pseudomorphic, as confirmed by high resolution x-ray diffraction reciprocal space mapping, and 200 nm thick films showed full relaxation. Transmission electron microscopy showed no evidence of antiphase domain formation, but there is a population of microtwin and stacking fault defects.
Resumo:
Chemical bath deposition (CBD)is one of the simplest, very convient and probably the cheapest method for thin film preparation. Photovoltaic is the cleanest and the most efficient mode of conversion of energy to electrical power. Silicon is the most popular material in this field. The present study on chemical bath deposited semiconducting copper selenide and iron sulfide thin films useful for photovoltaic applications. Semiconducting thin films prepared by chemical deposition find applications as photo detectors, solar control coatings and solar cells. Copper selenide is a p-type semiconductor that finds application in photovolitics. Several heterojunction systems such as Cu2-xSe/ZnSe (for injection electro luminescence), Cu2Se/AgInSe2 and Cu2Se/Si (for photodiodes), Cu2-xSe/CdS, Cu2-xSe/CdSe, CuxSe/InP and Cu2-xSe/Si for solar cells are reported. A maximum efficiency of 8.3% was achieved for the Cu2-xSe/Si cell, various preparation techniques are used for copper selenide like vacuum evaporation, direct reaction, electrodeposition and CBD. Instability of the as-prepared films was investigation and is accounted as mainly due to deviation from stoichiometry and the formation of iron oxide impurity. A sulphur annealing chamber was designed and fabricated for this work. These samples wee also analysed using optical absorption technique, XPS (X-ray Photoelectron Spectroscopy) and XRD.(X-Ray Diffraction).The pyrite films obtained by CBD technique showed amorphous nature and the electrical studies carried out showed the films to be of high resistive nature. Future work possible in the material of iron pyrite includes sulphur annealing of the non-stochiometric iron pyrite CBD thin films in the absence of atmospheric oxygen
Resumo:
Photoconductivity (PC) processes may be the most suitable technique for obtaining information about the states in the gap. It finds applications in photovoItaics, photo detection and radiation measurements. The main task in the area of photovoltaics, is to increase the efficiency of the device and also to develop new materials with good optoelectronic properties useful for energy conversion, keeping the idea of cost effectiveness. Photoconduction includes generation and recombination of carriers and their transport to the electrodes. So thermal relaxation process, charge carrier statistics, effects of electrodes and several mechanisms of recombination are involved in photoconductivity.A major effect of trapping is to make the experimentally observed decay time of photocurrent, longer than carrier lifetime. If no trapping centers are present, then observed photocurrent will decay in the same way as the density of free carriers and the observed decay time will be equal to carrier lifetime. If the density of free carriers is much less than density of trapped carriers, the entire decay of photocurrent is effectively dominated by the rate of trap emptying rather than by the rate of recombination.In the present study, the decay time of carriers was measured using photoconductive decay (PCD) technique. For the measurements, the film was loaded in a liquid Helium cryostat and the temperature was controlled using Lakshore Auto tuning temperature controller (Model 321). White light was used to illuminate the required area of the sample. Heat radiation from the light source was avoided by passing the light beam through a water filter. The decay current. after switching off the illumination. was measured using a Kiethely 2000 multi meter. Sets of PCD measurements were taken varying sample temperature, sample preparation temperature, thickness of the film, partial pressure of Oxygen and concentration of a particular element in a compound. Decay times were calculated using the rate window technique, which is a decay sampling technique particularly suited to computerized analysis. For PCD curves with two well-defined regions, two windows were chosen, one at the fast decay region and the other at the slow decay region. The curves in a particular window were exponentially fitted using Microsoft Excel 2000 programme. These decay times were plotted against sample temperature and sample preparation temperature to study the effect of various defects in the film. These studies were done in order to optimize conditions of preparation technique so as to get good photosensitive samples. useful for photovoltaic applications.Materials selected for the study were CdS, In2Se3, CuIn2Se3 and CuInS2• Photoconductivity studies done on these samples are organised in six chapters including introduction and conclusion.
Resumo:
The present thesis can be divided into three areas:1) the fabrication of a low temperature photo-luminescence and photoconductivity measuring unit 2) photo-luminescence in the chalcopyrite CulnSez and CulnS2 system for defect and composition analysis and 3) photo-luminescence and photo-conductivity of In:JS3. This thesis shows that photo-luminescence is one of most essential semiconductor characterization tool for a scientific group working on photovoltaics. Tools which can be robust, non-destructive, requiring minimal sample preparation for analysis and most informative of the device applications are sought after by industries and this thesis is towards establishing photo-luminescence as "THE" tool for semiconductor characterization. The possible application of photo-luminescence as a tool for compositional and quality analysis of semiconductor thin films has been worked upon by this thesis. Photo-conductivity complement photo-luminescence and together they provide all the information required for the fabrication of an opto-electronic device.
Resumo:
This work projects photoluminescence (PL) as an alternative technique to estimate the order of resistivity of zinc oxide (ZnO) thin films. ZnO thin films, deposited using chemical spray pyrolysis (CSP) by varying the deposition parameters like solvent, spray rate, pH of precursor, and so forth, have been used for this study. Variation in the deposition conditions has tremendous impact on the luminescence properties as well as resistivity. Two emissions could be recorded for all samples—the near band edge emission (NBE) at 380 nm and the deep level emission (DLE) at ∼500 nm which are competing in nature. It is observed that the ratio of intensities of DLE to NBE ( DLE/ NBE) can be reduced by controlling oxygen incorporation in the sample. - measurements indicate that restricting oxygen incorporation reduces resistivity considerably. Variation of DLE/ NBE and resistivity for samples prepared under different deposition conditions is similar in nature. DLE/ NBE was always less than resistivity by an order for all samples.Thus from PL measurements alone, the order of resistivity of the samples can be estimated.
Resumo:
This paper presents a careful evaluation among the most usual MPPT (Maximum Power Point Tracking) techniques, doing meaningful comparisons with respect to the amount of energy extracted from the photovoltaic (PV) panel, PV voltage ripple, dynamic response and use of sensors. Firstly, the MPPT and boost converter models were implemented via MatLab/Simulink®, and after a DC to DC boost converter, digitally controlled, was implemented and connected to an Agilent Solar Array simulator, in order to validate the simulation results. The algorithms are digitally developed and the main experimental results are also presented from the implemented prototype. Furthermore, the experimental dynamic results and the computed tracking factors are presented. © 2011 IEEE.