124 resultados para Photosensitive
Resumo:
Recently discovered intrinsically photosensitive melanopsin retinal ganglion cells contribute to the maintenance of pupil diameter, recovery and post-illumination components of the pupillary light reflex and provide the primary environmental light input to the suprachiasmatic nucleus for photoentrainment of the circadian rhythm. This review summarises recent progress in understanding intrinsically photosensitive ganglion cell histology and physiological properties in the context of their contribution to the pupillary and circadian functions and introduces a clinical framework for using the pupillary light reflex to evaluate inner retinal (intrinsically photosensitive melanopsin ganglion cell) and outer retinal (rod and cone photoreceptor) function in the detection of retinal eye disease.
Resumo:
Intrinsically photosensitive retinal ganglion cells (ipRGC) signal environmental light level to the central circadian clock and contribute to the pupil light reflex. It is unknown if ipRGC activity is subject to extrinsic (central) or intrinsic (retinal) network-mediated circadian modulation during light entrainment and phase shifting. Eleven younger persons (18–30 years) with no ophthalmological, medical or sleep disorders participated. The activity of the inner (ipRGC) and outer retina (cone photoreceptors) was assessed hourly using the pupil light reflex during a 24 h period of constant environmental illumination (10 lux). Exogenous circadian cues of activity, sleep, posture, caffeine, ambient temperature, caloric intake and ambient illumination were controlled. Dim-light melatonin onset (DLMO) was determined from salivary melatonin assay at hourly intervals, and participant melatonin onset values were set to 14 h to adjust clock time to circadian time. Here we demonstrate in humans that the ipRGC controlled post-illumination pupil response has a circadian rhythm independent of external light cues. This circadian variation precedes melatonin onset and the minimum ipRGC driven pupil response occurs post melatonin onset. Outer retinal photoreceptor contributions to the inner retinal ipRGC driven post-illumination pupil response also show circadian variation whereas direct outer retinal cone inputs to the pupil light reflex do not, indicating that intrinsically photosensitive (melanopsin) retinal ganglion cells mediate this circadian variation.
Resumo:
Intrinsically photosensitive retinal ganglion cells (ipRGCs) in the eye transmit the environmental light level, projecting to the suprachiasmatic nucleus (SCN) (Berson, Dunn & Takao, 2002; Hattar, Liao, Takao, Berson & Yau, 2002), the location of the circadian biological clock, and the olivary pretectal nucleus (OPN) of the pretectum, the start of the pupil reflex pathway (Hattar, Liao, Takao, Berson & Yau, 2002; Dacey, Liao, Peterson, Robinson, Smith, Pokorny, Yau & Gamlin, 2005). The SCN synchronizes the circadian rhythm, a cycle of biological processes coordinated to the solar day, and drives the sleep/wake cycle by controlling the release of melatonin from the pineal gland (Claustrat, Brun & Chazot, 2005). Encoded photic input from ipRGCs to the OPN also contributes to the pupil light reflex (PLR), the constriction and recovery of the pupil in response to light. IpRGCs control the post-illumination component of the PLR, the partial pupil constriction maintained for > 30 sec after a stimulus offset (Gamlin, McDougal, Pokorny, Smith, Yau & Dacey, 2007; Kankipati, Girkin & Gamlin, 2010; Markwell, Feigl & Zele, 2010). It is unknown if intrinsic ipRGC and cone-mediated inputs to ipRGCs show circadian variation in their photon-counting activity under constant illumination. If ipRGCs demonstrate circadian variation of the pupil response under constant illumination in vivo, when in vitro ipRGC activity does not (Weng, Wong & Berson, 2009), this would support central control of the ipRGC circadian activity. A preliminary experiment was conducted to determine the spectral sensitivity of the ipRGC post-illumination pupil response under the experimental conditions, confirming the successful isolation of the ipRGC response (Gamlin, et al., 2007) for the circadian experiment. In this main experiment, we demonstrate that ipRGC photon-counting activity has a circadian rhythm under constant experimental conditions, while direct rod and cone contributions to the PLR do not. Intrinsic ipRGC contributions to the post-illumination pupil response decreased 2:46 h prior to melatonin onset for our group model, with the peak ipRGC attenuation occurring 1:25 h after melatonin onset. Our results suggest a centrally controlled evening decrease in ipRGC activity, independent of environmental light, which is temporally synchronized (demonstrates a temporal phase-advanced relationship) to the SCN mediated release of melatonin. In the future the ipRGC post-illumination pupil response could be developed as a fast, non-invasive measure of circadian rhythm. This study establishes a basis for future investigation of cortical feedback mechanisms that modulate ipRGC activity.
Resumo:
Purpose: This study investigates the clinical utility of the melanopsin expressing intrinsically photosensitive retinal ganglion cell (ipRGC) controlled post-illumination pupil response (PIPR) as a novel technique for documenting inner retinal function in patients with Type II diabetes without diabetic retinopathy. Methods: The post-illumination pupil response (PIPR) was measured in seven patients with Type II diabetes, normal retinal nerve fiber thickness and no diabetic retinopathy. A 488 nm and 610 nm, 7.15º diameter stimulus was presented in Maxwellian view to the right eye and the left consensual pupil light reflex was recorded. Results: The group data for the blue PIPR (488 nm) identified a trend of reduced ipRGC function in patients with diabetes with no retinopathy. The transient pupil constriction was lower on average in the diabetic group. The relationship between duration of diabetes and the blue PIPR amplitude was linear, suggesting that ipRGC function decreases with increasing diabetes duration. Conclusion: This is the first report to show that the ipRGC controlled post-illumination pupil response may have clinical applications as a non-invasive technique for determining progression of inner neuroretinal changes in patients with diabetes before they are ophthalmoscopically or anatomically evident. The lower transient pupil constriction amplitude indicates that outer retinal photoreceptor inputs to the pupil light reflex may also be affected in diabetes.
Resumo:
Purpose: IpRGCs mediate non-image forming functions including photoentrainment and the pupil light reflex (PLR). Temporal summation increases visual sensitivity and decreases temporal resolution for image forming vision, but the summation properties of nonimage forming vision are unknown. We investigated the temporal summation of inner (ipRGC) and outer (rod/cone) retinal inputs to the PLR. Method: The consensual PLR of the left eye was measured in six participants with normal vision using a Maxwellian view infrared pupillometer. Temporal summation was investigated using a double-pulse protocol (100 ms stimulus pairs; 0–1024 ms inter-stimulus interval, ISI) presented to the dilated fellow right eye (Tropicamide 1%). Stimulus lights (blue λmax = 460 nm; red λmax = 638 nm) biased activity to inneror outer retinal inputs to non-image forming vision. Temporal summation was measured suprathreshold (15.2 log photons.cm−2.s−1 at the cornea) and subthreshold (11.4 log photons.cm−2.s−1 at the cornea). Results: RM-ANOVAs showed the suprathreshold and subthreshold 6 second post illumination pupil response (PIPR: expressed as percentage baseline diameter) did not significantly vary for red or blue stimuli (p > .05). The PIPR for a subthreshold red 16 ms double-pulse control condition did not significantly differ with ISI (p > .05). The maximum constriction amplitude for red and blue 100 ms double- pulse stimuli did not significantly vary with ISI (p > .05). Conclusion: The non-significant changes in suprathreshold PIPR and subthreshold maximum pupil constriction indicate that inner retinal ipRGC inputs and outer retinal photoreceptor inputs to the PLR do not show temporal summation. The results suggest a fundamental difference between the temporal summation characteristics of image forming and non-image forming vision.
Resumo:
Melanopsin containing intrinsically photosensitive Retinal Ganglion Cells (ipRGCs) are a class of photoreceptors with established roles in non-image forming processes. Their contributions to image forming vision may include the estimation of brightness. Animal models have been central for understanding the physiological mechanisms of ipRGC function and there is evidence of conservation of function across species. ipRGCs can be divided into 5 ganglion cell subtypes that show morphological and functional diversity. Research in humans has established that ipRGCs signal environmental irradiance to entrain the central body clock to the solar day for regulating circadian processes and sleep. In addition, ipRGCs mediate the pupil light reflex (PLR), making the PLR a readily accessible behavioural marker of ipRGC activity. Less is known about ipRGC function in retinal and optic nerve disease, with emerging research providing insight into their function in diabetes, retinitis pigmentosa, glaucoma and hereditary optic neuropathy. We briefly review the anatomical distributions, projections and basic physiological mechanisms of ipRGCs, their proposed and known functions in animals and humans with and without eye disease. We introduce a paradigm for differentiating inner and outer retinal inputs to the pupillary control pathway in retinal disease and apply this paradigm to patients with age-related macular degeneration (AMD). In these cases of patients with AMD, we provide the initial evidence that ipRGC function is altered, and that the dysfunction is more pronounced in advanced disease. Our perspective is that with refined pupillometry paradigms, the pupil light reflex can be extended to AMD assessment as a tool for the measurement of inner and outer retinal dysfunction.
Resumo:
The first heteropoly acid-dipeptide complex, (HGly-Gly)(3)PMo12O40.4H(2)O, was synthesized and characterized by elemental analysis, IR, UV, H-1 NMR and single crystal X-ray diffraction. The X-ray crystallographic study showed that the crystal structure was constructed from N-H...O and O-H...O hydrogen bonds among the (HGly-Gly)(+), H2O and PMo12O403- units. This structure represents a model interaction between polyoxometalates and proteins. The complex has photosensitivity under irradiation by sunlight. The fluorescent activity of this compound is also reported.
Resumo:
In order to develop photosensitive polyimides (PSPIs) imaged in alkaline aqueous solution, a photosensitive diamine and relevant polymer containing conjugated double bonds in the main chain have been synthesized. The photosensitive characteristics and thermal stability of the polymers were investigated. These polymers possess good thermal stability and sensitivity to UV irradiation, and could be used to form a PSPI resist using alkaline aqueous solution as developer. (C) 1999 Society of Chemical Industry.
Resumo:
Department of Polymer Science and Rubber Technology,Cochin University of Science and Technology
Resumo:
We report on a new class of nonionic, photosensitive surfactants consisting of a polar di(ethylene oxide) head group attached to an alkyl spacer of between two and eight methylene groups, coupled through an ether linkage to an azobenzene moiety. Structural changes associated with the interconversion of the azobenzene group between its cis and trans forms as mediated by the wavelength of an irradiating light source cause changes in the surface tension and self-assembly properties. Differences in saturated surface tensions (surface tension at concentrations above the CMC) were as high as 14.4 mN/m under radiation of different wavelengths. The qualitative behavior of the surfactants changed as the spacer length changed, attributed to the different orientations adopted by the different surfactants depending on their isomerization states, as revealed by neutron reflection studies. The self-assembly of these photosensitive surfactants has been investigated by light scattering, small angle neutron scattering, and cryo-TEM under different illuminations. The significant change in the self-assembly in response to different illumination conditions was attributed to the sign change in Gaussian rigidity, which originated from the azobenzene photoisomerization.
Resumo:
In this paper we present and demonstrate a technique that allows simultaneous and independent measurement of small changes in the refractive index and the absorption coefficient produced in photosensitive materials during holographic exposure. The technique is based on the synchronous detection of two-wave mixing signals in both directions of the transmitted interfering beams. By processing both signals it is possible to separate the diffraction contributions of the refractive index from the absorption coefficient and simultaneously stabilize the incident fringe pattern. The demonstration of this technique is undertaken by following the temporal evolution of the phase and amplitude modulations in photoresist films. To check the ability of the technique to perform numeric evaluations, for a positive photoresist the changes in the optical constants were measured and compared with those obtained using independent methods.