35 resultados para Phlogopite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An integrated whole-rock petrographic and geochemical study has been carried out on kamafugites and kimberlites of the Late Cretaceous Alto Paranaiba igneous province, in Brazil, and their main minerals, olivine, clinopyroxene, perovskite, phlogopite, spinels and ilmenite. Perovskite is by far the dominant repository for light lanthanides, Nb, Ta, Th and U, and occasionally other elements, reaching concentrations up to 3.4 x 10(4) chondrite values for light lanthanides and 105 chondrite for Th. A very strong fractionation between light and heavy lanthanides (chondrite-normalized La/Yb from similar to 175 to similar to 2000) is also observed. This is likely the first comprehensive dataset on natural perovskite. Clinopyroxene has variable trace-element contents. likely due to the different position of this phase in the crystallization sequence; Sc reaches values as high as 200 ppm whereas the lanthanides show very variable enrichment in light over heavy REE, and commonly show a negative Eu anomaly. The olivine, phlogopite (and tetra-ferriphlogopite), Cr-Ti oxide and ilmenite are substantially barren minerals for lanthanides and most other trace elements, with the exception of Ba, Cs and Rb in mica, and V, Nb and Ta in ilmenite. Estimated mineral/whole-rock partition coefficients for lanthanides in perovskite are similar to previous determinations, though much higher than those calculated in experiments with synthetic compositions, testifying once more to the complex behavior of these elements in a natural environment. The enormous potential for exploitation of lanthanides, Th, U and high-field-strength elements in the Brazilian kamafugites, kimberlites and related rocks is clearly shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The surface properties of minerals have important implications in geology, environment, industry and biotechnology and for certain aspects in the research on the origin of life. This research project aims to widen the knowledge on the nanoscale surface properties of chlorite and phlogopite by means of advanced methodologies, and also to investigate the interaction of fundamental biomolecules, such as nucleotides, RNA, DNA and amino acid glycine with the surface of the selected phyllosilicates. Multiple advanced and complex experimental approaches based on scanning probe microscopy and spatially resolved spectroscopy were used and in some cases specifically developed. The results demonstrate that chlorite exposes at the surface atomically flat terraces with 0.5 nm steps typically generated by the fragmentation of the octahedral sheet of the interlayer (brucitic-type). This fragmentation at the nanoscale generates a high anisotropy and inhomogeneity with surface type and isomorphous cationic substitutions determining variations of the effective surface potential difference, ranging between 50-100 mV and 400-500 mV, when measured in air, between the TOT surface and the interlayer brucitic sheet. The surface potential was ascribed to be the driving force of the observed high affinity of the surface with the fundamental biomolecules, like single molecules of nucleotides, DNA, RNA and amino acids. Phlogopite was also observed to present an extended atomically flat surface, featuring negative surface potential values of some hundreds of millivolts and no significant local variations. Phlogopite surface was sometimes observed to present curvature features that may be ascribed to local substitutions of the interlayer cations or the presence of a crystal lattice mismatch or structural defects, such as stacking faults or dislocation loops. Surface chemistry was found similar to the bulk. The study of the interaction with nucleotides and glycine revealed a lower affinity with respect to the brucite-like surface of chlorite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The impact of fluorine in copper flotation was relatively unknown until the introduction of skarn ores in the Ok Tedi concentrator. Fluorine in the copper concentrates reports to the gas phase during the smelting stage and forms a corrosive H2SO4-HCl-HF acid brine mixture which must be neutralised. This work was aimed at studying the mineralogy of the fluorosilicate minerals contained in the various oretypes present in the Ok Tedi porphyry copper deposit. The electron microprobe was used to analyse for fluorine and hence identify the fluorosilicate minerals in each oretype. This study revealed talc, phlogopite, biotite, clays, amphiboles, fluoroapatite and titanite to be the sources of fluorine in the orebody. Laboratory and plant investigations were conducted to study the flotation response of these minerals. Chemical assaying of the products of these tests was done to determine the bulk assay of fluorine, Using Rietveld analysis, quantitative estimates of the fluorosilicate minerals in these products were generated. Marrying of the bulk assay with the respective mineralogical assay enabled the understanding of the flotation behavior of fluorine and it's associated mineralogy. Talc and phlogopite were found to be the causes of the fluorine problem at Ok Tedi. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cretaceous Research 30 (2009) 575–586

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Located at the internal border of the Grand-Saint-Bernard Zone, the diorite and its aureole lie on top of intensively studied Alpine eclogitic units but this pluton, poorly studied yet, has kept locally almost undeformed. The pluton intruded, at similar to 360 Ma, country-rocks mostly composed of dark shales with Na2O > K2O and minor mafic intercalations of tholeiitic basalt affinity. This association is characteristic of the Vanoise (France) basement series, where available age determinations suggest an Early Paleozoic age. Parts of the pluton, and of its hornfels aureole that is evidenced here for the first time, in the Punta Bioula section of Valsavaranche valley (NW-Italy), have been well-preserved from the Alpine deformation. Syn-emplacement hardening, dehydration-induced, probably prevented strain-enhanced Alpine recrystallization. Magmatic rock-types range continuously from subordinate mafic types at SiO2 similar to 48%, of hornblendite with cumulative or appinite affinities, to the main body of quartz diorite to quartz monzonite (SiO2 up to 62%). P-T estimates for the pluton emplacement, based on the abundance of garnet in the hornfelses, using also zircon and apatite saturation thermometry and Al-in-hornblende barometry, suggest T similar to 800-950 degrees C and minimum P in the 0.2-0.5 GPa range, with records of higher pressure conditions (up to 1-2 GPa?) in hornblendite phlogopite-cored amphibole. The high-K, Na > K, calcalkaline geochemistry is in line with a destructive plate-margin setting. Based on major element data and radiogenic isotope signature (epsilon Nd-360 Ma from -1.2 to + 0.9, Sr-87/Sr-86(360 MA) from 0.7054 to 0.7063), the parental magmas are interpreted in terms of deep-seated metabasaltic partial melts with limited contamination from shallower sources, the low radiogenic Nd-content excluding a major contribution from Vanoise tholeiites. There is no other preserved evidence for Variscan magmatism of similar age and composition in the Western Alps, but probable analogs are known in the western and northern parts of French Massif Central. Regarding the Alpine tectonics, not only the age of the pluton and its host-rocks (instead of the Permo-Carboniferous age previously believed), but also its upper mylonitic contact, suggest revisions of the Alpine nappe model. The Cogne diorite allegedly constituted the axial part of the E-verging ``pli en retour [backfold] du Valsavaranche'', a cornerstone of popular Alpine structural models: in fact, the alleged fold limbs, as attested here by field and geochemical data, do not belong to the same unit, and the backfold hypothesis is unfounded. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The expansion of Brazilian agriculture has led to a heavy dependence on imported fertilizers to ensure the supply of the growing food demand. This fact has contributed to a growing interest in alternative nutrient sources, such as ground silicate rocks. It is necessary, however, to know the potential of nutrient release and changes these materials can cause in soils. The purpose of this study was to characterize six silicate rocks and evaluate their effects on the chemical properties of treated soil, assessed by chemical extractants after greenhouse incubation. The experimental design consisted of completely randomized plots, in a 3 x 6 factorial scheme, with four replications. The factors were potassium levels (0-control: without silicate rock application; 200; 400; 600 kg ha-1 of K2O), supplied as six silicate rock types (breccia, biotite schist, ultramafic rock, phlogopite schist and two types of mining waste). The chemical, physical and mineralogical properties of the alternative rock fertilizers were characterized. Treatments were applied to a dystrophic Red-Yellow Oxisol (Ferralsol), which was incubated for 100 days, at 70 % (w/w) moisture in 3.7 kg/pots. The soil was evaluated for pH; calcium and magnesium were extracted with KCl 1 mol L-1; potassium, phosphorus and sodium by Mehlich 1; nickel, copper and zinc with DTPA; and the saturation of the cation exchange capacity was calculated for aluminum, calcium, magnesium, potassium, and sodium, and overall base saturation. The alternative fertilizers affected soil chemical properties. Ultramafic rock and Chapada mining byproduct (CMB) were the silicate rocks that most influenced soil pH, while the mining byproduct (MB) led to high K levels. Zinc availability was highest in the treatments with mining byproduct and Cu in soil fertilized with Chapada and mining byproduct.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zirconium- and Ba-rich minerals are found in gabbroic rocks from the Ponte Nova alkaline mafic-ultramafic massif in southeastern Brazil. The unusual mineralogical assemblage includes zirconolite, baddeleyite, Ba-rich alkali feldspar, and Ba- and Ti-rich biotite. Zirconolite of the Ponte Nova massif has higher levels of Zr (up to 1.172 apfu) than those registered in other terrestrial rocks and a prominent enrichment in the light rare-earth elements. Baddeleyite contains small quantities of Hf, Ti, and Fe. The Ba-rich alkali feldspar and Ba- and Ti-rich biotite contain up to 9.25 and 7.35 wt% BaO, respectively, and the biotite contains up to 12.01 wt% TiO(2). In the different intrusions of the Ponte Nova massif, such an unusual assemblage typifies the residual magma after the crystallization of clinopyroxene and olivine from previously enriched basanitic parental magma. The different trends of enrichments in REE and Th + U found for zirconolite of the intrusions of the Ponte Nova massif provide a better understanding of the variable degrees of enrichment of incompatible elements of the distinct gabbroic bodies. A lithospheric mantle source enriched in incompatible elements by the metasomatic action of volatile-rich fluids and with the presence of phlogopite or amphibole (or both) and other minor accessory phases could explain the presence of the Zr- and Ba-rich minerals in this gabbroic massif.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Menezesite, ideally Ba2MgZr4(BaNb12O42)center dot 12H(2)O, occurs as a vug mineral in the contact zone between dolomite carbonatite and ""jacupirangite"" (=a pyroxenite) at the Jacupiranga mine, in Cajati county, Sao Paulo state, Brazil, associated with dolomite, calcite, magnetite, clinohumite, phlogopite, ancylite-(Ce), strontianite, pyrite, and tochilinite. This is also the type locality for quintinite-2H. The mineral forms rhombododecahedra up to I mm, isolated or in aggregates. Menezesite is transparent and displays a vitreous luster; it is reddish brown with a white streak. It is non-fluorescent. Mohs hardness is about 4. Calculated density derived from the empirical formula is 4.181 g/cm(3). It is isotropic, 1.93(1) (white light); n(calc) = 2.034. Menezesite exhibits weak anomalous birefringence. The empirical formula is (Ba1.47K0.53Ca0.3,Ce0.17Nd0.10Na0.06La0.02)(Sigma 2.66)(Mg0.94Mn0.23Fe0.23Al0.03)(Sigma 1.43)(Zr2.75Ti0.96Th0.29)(Sigma 4.00)[(Ba0.72Th0.26U0.02)(Sigma 1.00)(Nb9.23Ti2.29Ta0.36Si0.12)Sigma O-12.00(42)]center dot 12H(2)O. The mineral is cubic, space group 10 (204), a = 13.017(1) angstrom, V = 2206(1) angstrom(3), Z = 2. Menezesite is isostructural with the synthetic compound Mg-7[MgW12O42](OH)(4)center dot 8H(2)O. The mineral was named in honor of Luiz Alberto Dias Menezes Filho (born 1950), mining engineer, mineral collector and merchant. Both the description and the name were approved by the CNMMN-IMA (Nomenclature Proposal 2005-023). Menezesite is the first natural heteropolyniobate. Heteropolyanions have been employed in a range of applications that include virus-binding inorganic drugs (including the AIDs virus), homogeneous and heterogeneous catalysts, electro-optic and electrochromic materials, metal and protein binding, and as building blocks for nanostructuring of materials.