997 resultados para Perth Amboy Region (N.J.)--Maps.
Resumo:
General street map showing buildings and lot lines.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
On geology, resources, and population; with summary data on distances and rations.
Resumo:
Digital image
Resumo:
Secchi depth is a measure of water transparency. In the Baltic Sea region, Secchi depth maps are used to assess eutrophication and as input for habitat models. Due to their spatial and temporal coverage, satellite data would be the most suitable data source for such maps. But the Baltic Sea's optical properties are so different from the open ocean that globally calibrated standard models suffer from large errors. Regional predictive models that take the Baltic Sea's special optical properties into account are thus needed. This paper tests how accurately generalized linear models (GLMs) and generalized additive models (GAMs) with MODIS/Aqua and auxiliary data as inputs can predict Secchi depth at a regional scale. It uses cross-validation to test the prediction accuracy of hundreds of GAMs and GLMs with up to 5 input variables. A GAM with 3 input variables (chlorophyll a, remote sensing reflectance at 678 nm, and long-term mean salinity) made the most accurate predictions. Tested against field observations not used for model selection and calibration, the best model's mean absolute error (MAE) for daily predictions was 1.07 m (22%), more than 50% lower than for other publicly available Baltic Sea Secchi depth maps. The MAE for predicting monthly averages was 0.86 m (15%). Thus, the proposed model selection process was able to find a regional model with good prediction accuracy. It could be useful to find predictive models for environmental variables other than Secchi depth, using data from other satellite sensors, and for other regions where non-standard remote sensing models are needed for prediction and mapping. Annual and monthly mean Secchi depth maps for 2003-2012 come with this paper as Supplementary materials.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: Map of New-York Bay and Harbor and the environs : sheet no. 3, founded upon a trigonometrical survey under the direction of F.R. Hassler, superintendent of the Survey of the Coast of the United States ; triangulation by James Ferguson and Edmund Blunt, assistants ; the hydrography under the direction of Thomas R. Gedney, lieutenant U.S. Navy ; the topography by C. Renard and T.A. Jenkins assists. It was published by Survey of the Coast of the United States in 1844-1845. Scale 1:30,000. This layer is image 3 of 6 total images of the six sheet source map, representing the southwest portion of the map. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as lighthouses, buoys, beacons, rocks, channels, points, coves, islands, bottom soil types, wharves, and more. Includes also selected land features such as roads, drainage, land cover, forts, selected buildings, towns, and more. Relief shown by hachures. Depths are shown by soundings and shading. Includes text, table of currents and stations, notes, sailing directions, 4 coastal panoramas and 2 views of Sandy Hook Light. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: New York City and vicinity, H.M. Wilson, geographer in charge ; triangulation by U.S. Coast and Geodetic Survey ; topography by S.H. Bodfish ... [et al. and] U.S. Coast and Geodetic Survey, N.Y. City Government and the Geological Survey of New Jersey. It was published by U.S.G.S. in 1899. Scale 1:62,500. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD83 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. This map shows features such as roads, railroads, drainage, cities and towns, villages, forts, cemeteries, aqueducts, boundaries, and more. Relief is shown with standard contour intervals of 20 feet. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the United States Geological Survey 7.5 minute topographic sheet map entitled: New York and vicinity : Staten Island, N.Y.-N.J., 1955. It is part of an 8 sheet map set covering the metropolitan New York City area. It was published in 1961. Scale 1:24,000. The source map was prepared by the Geological Survey from 1:24,000-scale maps of Jersey City, Elizabeth, Arthur Kill, and The Narrows, 1955 7.5 minute quadrangles. Hydrography compiled from USC&GS charts 285 (1955), 286 (1954), 287 (1954), 745 (1956), 369 (1956), 540 (1954), 541 (1955) and 745 (1956). The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD27 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. USGS maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 10 and 20 feet; depths are shown with contours and soundings. Please pay close attention to map collar information on projections, spheroid, sources, dates, and keys to grid numbering and other numbers which appear inside the neatline. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
This layer is a georeferenced raster image of the United States Geological Survey 7.5 minute topographic sheet map entitled: New York and vicinity : Plainfield, N.J.-N.Y., 1956. It is part of an 8 sheet map set covering the metropolitan New York City area. It was published in 1961. Scale 1:24,000. The source map was prepared by the Geological Survey from 1:24,000-scale maps of Roselle 1955, Chatham 1955, Plainfield 1955, and Perth Amboy 1956 7.5 minute quadrangles compiled by the Army Map Service. Culture revised by the Geological Survey. Hydrography compiled from USC&GS charts 286 (1954) and 375 (1953). The image inside the map neatline is georeferenced to the surface of the earth and fit to the Universal Transverse Mercator (UTM) Zone 18N NAD27 projection. All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, index maps, legends, or other information associated with the principal map. USGS maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 10 and 20 feet; depths are shown with contours and soundings. Please pay close attention to map collar information on projections, spheroid, sources, dates, and keys to grid numbering and other numbers which appear inside the neatline. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection as part of the Imaging the Urban Environment project. Maps selected for this project represent major urban areas and cities of the world, at various time periods. These maps typically portray both natural and manmade features at a large scale. The selection represents a range of regions, originators, ground condition dates, scales, and purposes.
Resumo:
The changing development and population sprawl in major cities, especially those located in high rainfall areas, has resulted in the need to review and re-assess potential flood impacts in these cities. In many cases these new flood lines and flood maps have placed residential property that was previously considered to be flood free to now be considered to be potentially flood liable. Previous research based in Sydney and the UK has identified the fact that residential property that has been subject to flooding has a decreased price and higher investment risk than flood free property in the same location. These studies have also shown that the greatest impact on residential property subject to flooding is just following a flood event. In June 2009, Brisbane City Council released revised flood maps for the Greater Brisbane region and these maps have identified areas that have not previously been considered flood liable. This paper will analyse the sale performance of flood liable streets in the main flood areas of Brisbane over the period January 1990 through to June 2009, to determine the variation in price for these flood liable areas to the residential property immediately adjoining them. The average sale price will be tracked on both a geographic location and socio-economic basis.
Access to commercial destinations within the neighbourhood and walking among Australian older adults
Resumo:
BACKGROUND: Physical activity, particularly walking, is greatly beneficial to health; yet a sizeable proportion of older adults are insufficiently active. The importance of built environment attributes for walking is known, but few studies of older adults have examined neighbourhood destinations and none have investigated access to specific, objectively-measured commercial destinations and walking. METHODS: We undertook a secondary analysis of data from the Western Australian state government's health surveillance survey for those aged 65--84 years and living in the Perth metropolitan region from 2003--2009 (n = 2,918). Individual-level road network service areas were generated at 400 m and 800 m distances, and the presence or absence of six commercial destination types within the neighbourhood service areas identified (food retail, general retail, medical care services, financial services, general services, and social infrastructure). Adjusted logistic regression models examined access to and mix of commercial destination types within neighbourhoods for associations with self-reported walking behaviour. RESULTS: On average, the sample was aged 72.9 years (SD = 5.4), and was predominantly female (55.9%) and married (62.0%). Overall, 66.2% reported some weekly walking and 30.8% reported sufficient walking (>=150 min/week). Older adults with access to general services within 400 m (OR = 1.33, 95% CI = 1.07-1.66) and 800 m (OR = 1.20, 95% CI = 1.02-1.42), and social infrastructure within 800 m (OR = 1.19, 95% CI = 1.01-1.40) were more likely to engage in some weekly walking. Access to medical care services within 400 m (OR = 0.77, 95% CI = 0.63-0.93) and 800 m (OR = 0.83, 95% CI = 0.70-0.99) reduced the odds of sufficient walking. Access to food retail, general retail, financial services, and the mix of commercial destination types within the neighbourhood were all unrelated to walking. CONCLUSIONS: The types of neighbourhood commercial destinations that encourage older adults to walk appear to differ slightly from those reported for adult samples. Destinations that facilitate more social interaction, for example eating at a restaurant or church involvement, or provide opportunities for some incidental social contact, for example visiting the pharmacy or hairdresser, were the strongest predictors for walking among seniors in this study. This underscores the importance of planning neighbourhoods with proximate access to social infrastructure, and highlights the need to create residential environments that support activity across the life course.
Resumo:
Introduction: The built environment is increasingly recognised as being associated with health outcomes. Relationships between the built environment and health differ among age groups, especially between children and adults, but also between younger, mid-age and older adults. Yet few address differences across life stage groups within a single population study. Moreover, existing research mostly focuses on physical activity behaviours, with few studying objective clinical and mental health outcomes. The Life Course Built Environment and Health (LCBEH) project explores the impact of the built environment on self-reported and objectively measured health outcomes in a random sample of people across the life course. Methods and analysis: This cross-sectional data linkage study involves 15 954 children (0–15 years), young adults (16–24 years), adults (25–64 years) and older adults (65+years) from the Perth metropolitan region who completed the Health and Wellbeing Surveillance System survey administered by the Department of Health of Western Australia from 2003 to 2009. Survey data were linked to Western Australia's (WA) Hospital Morbidity Database System (hospital admission) and Mental Health Information System (mental health system outpatient) data. Participants’ residential address was geocoded and features of their ‘neighbourhood’ were measured using Geographic Information Systems software. Associations between the built environment and self-reported and clinical health outcomes will be explored across varying geographic scales and life stages. Ethics and dissemination: The University of Western Australia's Human Research Ethics Committee and the Department of Health of Western Australia approved the study protocol (#2010/1). Findings will be published in peer-reviewed journals and presented at local, national and international conferences, thus contributing to the evidence base informing the design of healthy neighbourhoods for all residents.
Resumo:
This study analyzed species richness, distribution, and sighting frequency of selected reef fishes to describe species assemblage composition, abundance, and spatial distribution patterns among sites and regions (Upper Keys, Middle Keys, Lower Keys, and Dry Tortugas) within the Florida Keys National Marine Sanctuary (FKNMS) barrier reef ecosystem. Data were obtained from the Reef Environmental Education Foundation (REEF) Fish Survey Project, a volunteer fish-monitoring program. A total of 4,324 visual fish surveys conducted at 112 sites throughout the FKNMS were used in these analyses. The data set contained sighting information on 341 fish species comprising 68 families. Species richness was generally highest in the Upper Keys sites (maximum was 220 species at Molasses Reef) and lowest in the Dry Tortugas sites. Encounter rates differed among regions, with the Dry Tortugas having the highest rate, potentially a result of differences in the evenness in fishes and the lower diversity of habitat types in the Dry Tortugas region. Geographic coverage maps were developed for 29 frequently observed species. Fourteen of these species showed significant regional variation in mean sighting frequency (%SF). Six species had significantly lower mean %SF and eight species had significantly higher mean %SF in the Dry Tortugas compared with other regions. Hierarchical clustering based on species composition (presence-absence) and species % SF revealed interesting patterns of similarities among sites that varied across spatial scales. Results presented here indicate that phenomena affecting reef fish composition in the FKNMS operate at multiple spatial scales, including a biogeographic scale that defines the character of the region as a whole, a reef scale (~50-100 km) that include meso-scale physical oceanographic processes and regional variation in reef structure and associated reef habitats, and a local scale that includes level of protection, cross-shelf location and a suite of physical characteristics of a given reef. It is likely that at both regional and local scales, species habitat requirements strongly influence the patterns revealed in this study, and are particularly limiting for species that are less frequently observed in the Dry Tortugas. The results of this report serve as a benchmark for the current status of the reef fishes in the FKNMS. In addition, these data provide the basis for analyses on reserve effects and the biogeographic coupling of benthic habitats and fish assemblages that are currently underway. (PDF contains 61 pages.)
Resumo:
Mode of access: Internet.