818 resultados para Permian stratigraphy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six units are distinguished in the Permian sequence, and are considered to belong to the Sakmarian and Artinskian stages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New detailed stratigraphic and micropaleontological works on the famous exposures of Permian rocks in Hydra rich in Foraminifera, allows to define the stratigraphy of other outcrops in Aegina, Salamis, Attica and Chios. A synthetic section is presented which is characterized by the development of 3 successive carbonate platforms during the Permian and by 4 main tectonostratigraphic events. The youngest of these events marks the closure of the Paleotethyan ocean and the collision of a former Gondwanian/Cimmerian passive margin in the S with an active margin in the N.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article is the first part of an overall theme dealing with different stratigraphic approaches to basin analysis. The traditional stratigraphy, based on formal units, is discussed here with an attempt to analyse their principles, methods and purposes. Using the Permian carboniferous sequence of Parana Basin as a paradigm, some critical inferences concerning the limitations of such an approach in environmental reconstruction are attained. -English summary

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work fits the concepts of depositional systems and depositional sequence as paralithostratigraphic and parachronostratigraphic units, respectively, and discusses the advantages of using this approach in environmental reconstructions. The depositional system concept came to a focus as a link between sedimentology and stratigraphy since it represents both a facies association and a mapping unit. Additionally, the depositional sequence represents the sedimentary episode of relative sea level change, in interaction with basin paleophysiography. In such a way a time-space diagnosis is reached in environmental interpretation as illustrated by the Permian-Carboniferous sequence of the Parana Basin. -English summary

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stable isotopes of carbonates (delta(13)C(carb), delta(18)O(carb)), organic matter (delta(13)C(org), delta(15)N(org)) and major, trace and rare earth element (REE) compositions of marine carbonate rocks of Late Permian to Early Triassic age were used to establish the position of the Permian-Triassic boundary (PTB) at two continuous sections in the Velebit Mountain, Croatia. The chosen sections - Rizvanusa and Brezimenjaca - are composed of two lithostratigraphic units, the Upper Permian Transitional Dolomite and the overlying Sandy Dolomite. The contact between these units, characterized by the erosional features and sudden occurrence of ooids and siliciclastic grains, was previously considered as the chronostratigraphic PTB. The Sandy Dolomite is characterized by high content of non-carbonate material (up to similar to 30 wt.% insoluble residue), originated from erosion of the uplifted hinterland. A relatively rich assemblage of Permian fossils (including Geinitzina, Globivalvulina, Hemigordius, bioclasts of gastropods, ostracods and brachiopods) was found for the first time in Sandy Dolomite, 5 m above the lithologic boundary in the Rizvanusa section. A rather abrupt negative delta(13)C(carb) excursion in both sections appears in rocks showing no recognizable facies change within the Sandy Dolomite, -2 parts per thousand at Rizvanusa and -1.2 parts per thousand at Brezimenjaca, 11 m and 0.2 m above the lithologic contact, respectively. This level within the lower part of the Sandy Dolomite is proposed as the chemostratigraphic PTB. In the Rizvanusa section, the delta(13)C(org) values decline gradually from similar to-25 parts per thousand in the Upper Permian to similar to-29 parts per thousand in the Lower Triassic. The first negative delta(13)C(org) excursion occurs above the lithologic contact, within the uppermost Permian deposits, and appears to be related to the input of terrigenous material. The release of isotopically light microbial soil-biomass into the shallow-marine water may explain this sudden decrease of delta(13)C(org) values below the PTB. This would support the hypothesis that in the western Tethyan realm the land extinction, triggering a sudden drop of woody vegetation and related land erosion, preceded the marine extinction. The relatively low delta(15)N(org) values at the Permian-Triassic (P-Tr) transition level, close to approximate to 0 parts per thousand, and a secondary negative delta(13)C(org) excursion of -0.5 parts per thousand point to significant terrestrial input and primary contribution of cyanobacteria. The profiles of the concentrations of redox-sensitive elements (Ce, Mn, Fe, V), biogenic or biogenic-scavenged elements (P, Ba, Zn, V), Ce/Ce* values, and normalized trace elements, including Ba/Al, Ba/Fe, Ti/Al, Al/(Al + Fe + Mn) and Mn/Ti show clear excursions at the Transitional Dolomite-Sandy Dolomite lithologic boundary and the chemostratigraphic P-Tr boundary. The stratigraphic variations indicate a major regression phase marking the lithologic boundary, transgressive phases in the latest Permian and a gradual change into shallow/stagnant anoxic marine environment towards the P-Tr boundary level and during the earliest Triassic. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Permian to Late Cretaceous allochthonous sedimentary and volcanic rocks exposed in the Batain area (eastern Oman Margin) have received comparably little attention in the past. They largely were considered as part of the Hamrat Duru Group (Hawasina Complex) of the northern Oman Mountains. Structural, kinematic and biostratigraphic results from our mapping campaign in the Batain area have now revealed, that emplacement of these units occurred in a WNW direction during latest Cretaceous/Early Paleogene time. This clearly contrasts with previous models that postulated a S-ward directed obduction in Campanian times such as recorded from the Hawasina Complex and Semail Ophiolite in the Oman Mountains. We herewith establish the `'Batain Group'' comprising all Permian to Late Cretaceous allochthonous units in the Batain Area. These are: 1.) the Permian Qarari Formation deposited in the toe of a slope setting; 2.) the Late Permian to late Liassic Al Jil Formation comprising periplatform detritus and very coarse breccias; 3.) the Scythian to Norian Matbat Formation formed by slope deposits; 4.) the Early Jurassic to early Oxfordian Guwayza Formation with high energy platform detritus; 5.) the Mid-Jurassic to earliest Cretaceous Ruwaydah Formation seamount; and 6.) the Oxfordian to Santonian Wahrah Formation, mainly radiolarites; and 7.) the Santonian to latest Maastrichtian Fayah Formation built by flysch-type sediments. These sedimentary and volcanic rocks represent deposits of the former ``Batain basin'' off eastern-Oman, destroyed by compressional tectonics at the Cretaceous/Paleogene transition. For tectono-stratigraphic reasons the Batain Group does not form part of the Hawasina Complex.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new subdivision of the pre-Jurassic Pelagonian Units in central Evia island is proposed these units are represented by syn- and post rift sequences, separated by a volcano-sedimentary episode. The syn-rift sequences comprise Permian siliciclastic sediments in Verrucano tectofacies, (Ano Mavropoulon Formation) and a small carbonate platform (Zigos Limestones) developed from the Permian to the Middle Anisian. The Ano Mavropoulon Fro, is subdivided into three members: the lower member (Permian s.l.) lying on the basement and characterised by medium-coarse elastic terrigenous sedimentation the middle member (Late Permian) Koprises limestones, made up of shallow-water limestones; the upper member (Latest Permian-Early Triassic) comprising elastic terrigenous and minor reworked carbonate sediments. A regional unconformity (earliest Triassic) separates the Zigos Lm. from the top of the Ano Mavropoulon Fm. The peritidal carbonates belonging to the Zigos Lm, have been subdivided into three lithofacies ranging in age from Spathian to Pelsonian (late Early Triassic to Middle Anisian). The volcanic episode is well constrained in all the Pelagonian domain. In central Evia, it has been dated from Middle Anisian to Early Carnian. The sub-alkaline to alkaline basalts comprised in the volcano-sedimentary sequence (Volcano-sedimentary Complex) have a within-plate affinity. The volcanism occurs between the syn-rift and post-rift stages, and it is probably not linked to the passive margin evolution proper. The post-rift sequences are represented by the onset of the Pelagonian platform aggradation (''Pantokrator'' Carnian to Middle-Late? Jurassic) The northern passive margin sequence of Pelagonia (palaeogeographic sense) is interpreted as related to the Maliak ocean opening during the Early Mesozoic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study analyses the stratigraphy, structure and kinematics of the northern part of the Adula nappe of the Central Alps. The Adula nappe is one of the highest basement nappes in the Lower Penninic nappe stack of the Lepontine Dome. This structural position makes possible the investigation of the transition between the Helvetic and North Penninic paleogeographic domains. The Adula nappe is principally composed of crystalline basement rocks. The investigation of the pre-Triassic basement shows that it contains several Palaeozoic detrital metasedimentary formations dated from the Cambrian to the Ordovician. These formations contain also some volcanic or intrusive magmatic rocks. Ordovician metagranites dated at ~450 Ma are also a common rock-type of the Adula basement. These formations underwent Alpine and Variscan deformation and metamorphism. Permian granites (Zervreila orthogneiss, dated at ~290 Ma) have intruded this pre-structured basement in a post-orogenic geodynamic context. Due to their age, the Zervreila orthogneiss are good markers for alpine deformation. The stratigraphy of the Mesozoic and Paleogene sedimentary cover of the Adula nappe is essential to unraveling its pre- orogenic history. The autochthonous cover is assigned to a North Penninic Triassic series that testifies for a transition between the Helvetic and Briançonnais Triassic domains. The Adula domain goes through an emersion during the Middle Jurassic, and is part of a topographic high during the first phase of the Alpine rift. The sediments of the late Middle Jurassic show a drowning phase associated with a tectonic activity and a breccia formation. In the neighbouring domains, coeval with the drowning phase in the Adula domain, a strong extensional crustal delamination and a scattered magmatic activity is associated with the main opening of the North Penninic domain. The Upper Jurassic of the Adula nappe is characterized by a carbonate formation comparable with those in the Helvetic or Subbriaçonnais domains. Flysch s.l. deposition starts probably at the end of the Cretaceous. These sediments are deposited on a large unconformity testifying for a Cretaceous sedimentary gap. The Adula nappe exhibits a very complex structure. This structure is formed by several deformation phases. Two ductile deformations are responsible for the nappe emplacement. The first deformation phase is associated with a folding compatible with a top-to-south movement at the top of the nappe. The second phase is dominant and pervasive throughout the whole nappe. It goes with a strong north vergent folding and the main nappe emplacement. These two phases cause the exhumation and emplacement of a coherent, although pre-structured, piece of continental crust. Two further deformation phases postdate the nappe emplacement. - Ce travail concerne l'étude géologique de la partie nord de la nappe de l'Adula dans les Alpes centrales. La nappe de l'Adula est l'une des nappes cristallines la plus élevée dans la pile des nappes du Pennique inférieur des Alpes lepontines. Cette position particulière permet d'étudier la transition entre les nappes des domaines helvétique et pennique inférieur. La nappe de l'Adula est principalement composée de socle cristallin : l'étude de l'histoire géologique du socle est donc l'un des thèmes de cette recherche. Ce socle contient plusieurs formations métasédimentaires paléozoïques du Cambrien à I'Ordovicien. Ces métasédiments sont issus de formations clastiques comprenant souvent des roches magmatiques volcaniques et intrusives. Ces métasédiments ont subi les cycles orogéniques varisque et alpin. La nappe de l'Adula contient plusieurs corps magmatiques granitiques métamorphisés. Les premiers métagranites sont Ordovicien et témoignent d'un environnement de marge active. Ces granites sont aussi polymétamorphiques. Les deuxièmes métagranites sont représentés par les orthogneiss de type Zervreila. Ce métagranite est d'âge permien (-290 Ma). Il est mis en place dans un contexte tectonique post-orogénique. Ce granite est un maqueur de la déformation alpine car il n'est pas affecté par les orogenèses précédentes, flippy Le contenu stratigraphique des roches mésozoïques et cénozoiques de la couverture sédimentaire de la nappe de l'Adula est'important pour en étudier son histoire pré-alpine. La couverture autochtone est composée d'une série d'âge triasique d'affinité nord-pennique, un faciès qui marque la transition entre les domaines helvétiques et briançonnais au Trias. Le domaine paléogéographique représenté dans la nappe de l'Adula connaît une émersion pendant le Jurassique moyen. Cette émersion marque le commencement du rift dans le domaine alpin. La sédimentation de la fin du Jurassique moyen est marquée par une transgression marine accompagnée par des mouvements tectoniques et la formation d'une brèche. Cette transgression est contemporaine des importants mouvements tectoniques et des manifestations magmatiques dans les unités voisines qui marquent la phase principale d'ouverture du bassin nord-pennique. Le Jurassique supérieur est caractérisé par l'instauration d'une sédimentation carbonatée comparable à celle du domaine helvétique ou subbriançonnais. Une sédimentation flyschoïde, probablement du Crétacé à Tertiaire, est déposée sur une importante discordance qui témoigne d'une lacune au Crétacé. La structure complexe de la nappe de l'Adula témoigne de nombreuses phases de déformation. Ces phases de déformation sont en partie issues de la mise en place de la nappe et de déformations plus tardives. La mise en place de la nappe produit deux phases de déformation ductile : la première produit un plissement compatible avec un cisaillement top-vers-le sud dans la partie supérieure de la nappe; la deuxième produit un intense plissement qui accompagne la mise en place de la nappe vers le nord. Ces deux phases de déformation témoignent d'un mécanisme d'exhumation par déformation ductile d'un bloc cohérent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Oman Mountains provide some of the best sections of Permian and Triassic sediments from ocean sea floor to base-of-slope environments related to the distal South Tethyan margin. The central part of the range exposes the Buday'ah section of oceanic sediments in the so-called "Hawasina allochtons". The locality of Wadi Maqam in the north-western part of the Oman Mountains is among places where the thick Permian-Triassic base-of-slope sediments is exposed (Baud et al., 2001). Overlying 400 m of middle Permian limestones and dolomites, the upper Permian sediments consist of 50 m of ≈ 10 cm thick beds of cherts and dolomites rich in sponge spicules. The top of the Permian units is well bioturbated lime mudstone-wackestone, devoid of cherts and dated as late Changhsingian (Krystyn in Richoz et al., 2005). The boundary yellow shales are overlain by very thinly bedded, laminated microbial platy lime mudstone with H. parvus. The dramatic loss of the burrowing infauna indicates the appearance of oxygen-poor water. These Induan sediments are about 25 m thick and show at the top the first calcirudites, commonly clast-supported (edge-wise conglomerates), and are characterized by tabular clasts representing the sub- in situ reworking of the laminated, platy calcilutite. The very thick Smithian overlying litho-unit (up to 900 m) marks the onset on the base-of-slope of a deep-marine basin in which carbonate submarine fan deposits developed This very thick unit consists essentially of platy limestones, calcarenites and calcirudites. It comprises mainly grey-beige calcilutite, laminated and flaggy, interbedded with sparse beds of fine-grained calcarenite in cm beds. Channelized beds of intraformational calcirudite are also part of this succession which constitutes the greater part of the outcrop available. During the Spathian to Anisian, the sedimentation changes to terrigenous mudstone and siltstone that ended with Ladinian radiolarites.