964 resultados para Pepper cultivation
Resumo:
This study is directed to examine how far price fluctuations in pepper can be controlled in the Indian context so as to have a reasonable and stable income for the primary producers which will ensure an adequate ‘encouragement for higher production and better export earnings. In a study of the methods of controlling violent price fluctuations a important question is that whether the present system of management of supply is satisfactory or not. It is more so when the demand is likely to be sanimlatsd by the importers and wholesalers of the foreign countries. Though pepper is the most important of all the spices gross in India, little work has been done so far to study the problems and prospects of this commodity.
Resumo:
The present Study is designed to gather, record and analyse data on history of pepper, pepper production, procurement and marketing with particular reference to Kerala. The main emphasis is given to study the'role of cooperative sector with regard to procurement and export efforts and also the services rendered by cooperative sector agencies under MARKETFED and NAFED to pepper trade. The scope of the Study covers the botany, methods of cultivation, fertilizer application, pest control management and other related aspects of pepper. Taking into consideration Kerala's supremacy in pepper cultivation and production, detailed study of its production, procurement, internal and export marketing with reference to Kerala has been given importance. As Kerala accounts for 96 per cent1 of the pepper cultivation and 94 per cent of the pepper production, the present study is entirely confined to Kerala
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Alterations in levels of NPK, electrical conductivity and pH of substrate, in cultivation of peppers
Resumo:
The objective of this work was to evaluate the chemical alterations of the substrate in the cultivation of pepper in coconut husk fiber, in a protected environment. Initially, 160 pepper plants ('Eppo') were divided into four blocks, where two pots per block were analyzed every 21 days after transplanting. The cultivation of pepper was carried out in plastic pots of 13 L, containing coconut husk fiber, and placed in double rows with a spacing of 0.5×0.8 m between single rows and 1.10 m between double rows. After removal of the plants from the pots, individual samples of substrate (approximately 1 L) were collected from each pot and dried at ambient temperature. Electrical conductivity (EC), pH, and levels of NH4 +-N, NO3 -, P and K were determined for all periods of the cultivation. These analyses were performed using the method of extraction 1:1.5 v/v. For the conditions which the experiment was conducted, there was an increase in substrate EC, as well as in the levels of nitrogen, phosphorus and potassium.
Resumo:
The objective of this study was to evaluate the chemical alterations of the substrate in the cultivation of peppers grown in coconut husk fiber, in a protected environment. Initially, 160 pepper plants ('Eppo') were divided into four blocks, where two pots per block were analyzed every 21 days after transplanting. The cultivation of pepper was carried out in plastic pots of 13 L, containing coconut husk fiber, and placed in double rows with a spacing of 0.5×0.8 m between single rows and 1.10 m between double rows. After removal of the plants from the pots, individual samples of substrate (approximately 1 L) were collected from each pot and dried at ambient temperature. The levels of Ca, Mg, S, Cl, Na, B, Fe, Mn, Cu and Zn were determined for all periods of the cultivation. These analyses were performed using the method of extraction 1:1.5 v/v. There was an increase in the levels of all the nutrients evaluated. Further studies should be conducted to develop a better nutrient solution.
Resumo:
Articular cartilage exhibits limited intrinsic regenerative capacity and focal tissue defects can lead to the development of osteoarthritis (OA), a painful and debilitating loss of cartilage tissue. In Australia, 1.4 million people are affected by OA and its prevalence is increasing in line with current demographics. As treatment options are limited, new therapeutic approaches are being investigated including biological resurfacing of joints with tissue-engineered cartilage. Despite some progress in the field, major challenges remain to be addressed for large scale clinical success. For example, large numbers of chondrogenic cells are required for cartilage formation, but chondrocytes lose their chondrogenic phenotype (dedifferentiate) during in vitro propagation. Additionally, the zonal organization of articular cartilage is critical for normal cartilage function, but development of zonal structure has been largely neglected in cartilage repair strategies. Therefore, we hypothesised that culture conditions for freshly isolated human articular chondrocytes from non-OA and OA sources can be improved by employing microcarrier cultures and a reduced oxygen environment and that oxygen is a critical factor in the maintenance of the zonal chondrocyte phenotype. Microcarriers have successfully been used to cultivate bovine chondrocytes, and offer a potential alternative for clinical expansion of human chondrocytes. We hypothesised that improved yields can be achieved by propagating human chondrocytes on microcarriers. We found that cells on microcarriers acquired a flattened, polygonal morphology and initially proliferated faster than monolayercultivated cells. However, microcarrier cultivation over four weeks did not improve growth rates or the chondrogenic potential of non-OA and OA human articular chondrocytes over conventional monolayer cultivation. Based on these observations, we aimed to optimise culture conditions by modifying oxygen tension, to more closely reflect the in vivo environment. We found that propagation at 5% oxygen tension (moderate hypoxia) did not improve proliferation or redifferentiation capacity of human osteoarthritic chondrocytes. Moderate hypoxia increased the expression of chondrogenic markers during redifferentiation. However, osteoarthritic chondrocytes cultivated on microcarriers exhibited lower expression levels of chondrogenic surface marker proteins and had at best equivalent redifferentiation capacities compared to monolayer-cultured cells. This suggests that monolayer culture with multiple passaging potentially selects for a subpopulation of cells with higher differentiation capacity, which are otherwise rare in osteoarthritic, aged cartilage. However, fibroblastic proteins were found to be highly expressed in all cultures of human osteoarthritic chondrocytes indicating the presence of a high proportion of dedifferentiated, senescent cells with a chondrocytic phenotype that was not rescued by moderate hypoxia. The different zones of cartilage support chondrocyte subpopulations, which exhibit characteristic protein expression and experience varying oxygen tensions. We, therefore, hypothesised that oxygen tension affects the zonal marker expression of human articular chondrocytes isolated from the different cartilage layers. We found that zonal chondrocytes maintained these phenotypic differences during in vitro cultivation. Low oxygen environments favoured the expression of the zonal marker proteoglycan 4 in superficial cells, most likely through the promotion of chondrogenesis. The putative zonal markers clusterin and cartilage intermediate layer protein were found to be expressed by all subpopulations of human osteoarthritic chondrocytes ex vivo and, thus, may not be reliable predictors of in vitro stratification using these clinically relevant cells. The findings in this thesis underline the importance of considering low oxygen conditions and zonal stratification when creating native-like cartilaginous constructs. We have not yet found the right cues to successfully cultivate clinically-relevant human osteoarthritic chondrocytes in vitro. A more thorough understanding of chondrocyte biology and the processes of chondrogenesis are required to ensure the clinical success of cartilage tissue engineering.
Resumo:
This chapter explores the role of the built environment in the creation, cultivation and acquisition of a knowledge base by people populating the urban landscape. It examines McDonald’s restaurants as a way to comprehend the relevance of the physical design in the diffusion of codified and tacit knowledge at an everyday level. Through an examination of space at a localised level, this chapter describes the synergies of space and the significance of this relationship in navigating the global landscape.
Resumo:
We have presently evaluated membranes prepared from Bombyx mori silk fibroin (BMSF), for their potential use as a prosthetic Bruch’s membrane and carrier substrate for human retinal pigment epithelial (RPE) cell transplantation. Porous BMSF membranes measuring 3 μm in thickness were prepared from aqueous solutions (3% w/v) containing poly(ethylene oxide) (0.09%). The permeability coefficient for membranes was between 3 and 9 × 10-5 cm/s by using Allura red or 70 kDa FITC-dextran respectively. Average pore size (± sd) was 4.9 ± 2.3 µm and 2.9 ± 1.5 µm for upper and lower membrane surfaces respectively. Optimal attachment of ARPE-19 cells to BMSF membrane was achieved by pre-coating with vitronectin (1 µg/mL). ARPE-19 cultures maintained in low serum on BMSF membranes for approximately 8 weeks, developed a cobble-stoned morphology accompanied by a cortical distribution of F-actin and ZO-1. Similar results were obtained using primary cultures of human RPE cells, but cultures took noticeably longer to establish on BMSF compared with tissue culture plastic. These findings encourage further studies of BMSF as a substrate for RPE cell transplantation.
Resumo:
This paper presents a hybrid framework of Swedish cultural practices and Australian grounded theory for organizational development and suggests practical strategies for 'working smarter' in 21st Century libraries. Toward that end, reflective evidence-based practices are offered to incrementally build organizational capacity for asking good questions, selecting authoritative sources, evaluating multiple perspectives, organizing emerging insights, and communicating them to inform, educate, and influence. In addition, to ensure the robust information exchange necessary to collective workplace learning, leadership traits are proposed for ensuring inclusive communication, decision making, and planning processes. These findings emerge from action research projects conducted from 2003 to 2008 in two North American libraries.
Resumo:
Purpose: The silk protein fibroin provides a potential substrate for use in ocular tissue reconstruction. We have previously demonstrated that transparent membranes produced from fibroin support cultivation of human limbal epithelial cells (Tissue Eng A. 14(2008)1203-11). We presently extend this body of work to studies of human limbal stromal cell (HLS) growth on fibroin in the presence and absence of serum. Methods: Primary cultures of HLS cells were established in DMEM/F12 medium supplemented with either 10% fetal bovine serum (FBS) or 2% B27 supplement. Defined keratinocyte serum-free medium (DK-SFM, Invitrogen) was also tested. The resulting cultures were analysed by flow cytometry for expression of CD34, CD90, CD45, and CD141. Cultures grown under each condition were subsequently passaged either onto transparent fibroin membranes prepared from purified fibroin or within 3D scaffolds prepared from partially-solubilised fibroin. Results: HLS cultures were successfully established under each condition, but grew more slowly and passaged poorly in the absence of serum. Cultures grown in 10% FBS were <0.5% CD34+ (keratocytes) and >97% CD90+ (fibroblasts). Cultures established in 2% B27 formed floating spheres and contained >8% CD34+ cells and reduced CD90 expression. Cultures established in DK-SFM displayed traces of epithelial cell growth (CD141), but mostly consisted of CD90+ cells with <1% CD34+ cells. Cells of bone marrow lineage (CD45) were rarely observed under any conditions. Cultures grown in 10% FBS were able to adhere to and proliferate on silk fibroin 3-D scaffolds and transparent films while those grown serum-free could not. Adhesion of HLS cells to fibroin was initially poorer than that displayed on tissue culture plastic. Conclusions: HLS cultures containing cells of predominantly fibroblast lineage can be grown on fibroin-based materials, but this process is dependent upon additional ECM factors such as those provided by serum.
Resumo:
Filamentous fungi are important organisms for basic discovery, industry, and human health. Their natural growth environments are extremely variable, a fact reflected by the numerous methods developed for their isolation and cultivation. Fungal culture in the laboratory is usually carried out on agar plates, shake flasks, and bench top fermenters starting with an inoculum that typically features fungal spores. Here we discuss the most popular methods for the isolation and cultivation of filamentous fungi for various purposes with the emphasis on enzyme production and molecular microbiology.
Resumo:
Peptidases are ubiquitous enzymes involved in diverse biological processes. Fragments from bioactive peptides have been found in skin secretions from frogs, and their presence suggests processing by peptidases. Thus, the aim of this work was to characterize the peptidase activity present in the skin secretion of Leptodactylus labyrinthicus. Zymography revealed the presence of three bands of gelatinase activity of approximately 60 kDa, 66 kDa, and 80 kDa, which the first two were calcium-dependent. These three bands were inhibited either by ethylenediaminetetraacetic acid (EDTA) and phenathroline; thus, they were characterized as metallopeptidases. Furthermore, the proteolytic enzymes identified were active only at pH 6.0–10.0, and their activity increased in the presence of CHAPS or NaCl. Experiments with fluorogenic substrates incubated with skin secretions identified aminopeptidase activity, with cleavage after leucine, proline, and alanine residues. This activity was directly proportional to the protein concentration, and it was inhibited in the presence of metallo and serine peptidase inhibitors. Besides, the optimal pH for substrate cleavage was determined to be 7.0–8.0. The results of the in gel activity assay showed that all substrates were hydrolyzed by a 45 kDa peptidase. Gly-Pro-AMC was also cleaved by a peptidase greater than 97 kDa. The data suggest the presence of dipeptidyl peptidases (DPPs) and metallopeptidases; however, further research is necessary. In conclusion, our work will help to elucidate the implication of these enzymatic activities in the processing of the bioactive peptides present in frog venom, expanding the knowledge of amphibian biology.
Resumo:
The interest in potentially economically valuable plants (for food, timber, dyes, fabric, and drugs) was part of the concerted effort given by colonial governments towards providing botanic gardens in new colonies. While convicts and guards laboured in Brisbane Town from 1825 until 1849, botanists such as Alan Cunningham were discovering the delights of native plants in their numerous excursions. Their observations and collections of seeds were sent south (to the local botanic gardens at Melbourne and Sydney) and onward to the Royal Botanic Gardens in Britain (at Kew and Edinburgh). This set the local pattern for future exchanges among the global British Imperial botanic garden network...