995 resultados para Particle diameters
Resumo:
The Lagrangian particle tracking provides an effective method for simulating the deposition of nano- particles as well as micro-particles as it accounts for the particle inertia effect as well as the Brownian excitation. However, using the Lagrangian approach for simulating ultrafine particles has been limited due to computational cost and numerical difficulties. The aim of this paper is to study the deposition of nano-particles in cylindrical tubes under laminar condition using the Lagrangian particle tracking method. The commercial Fluent software is used to simulate the fluid flow in the pipes and to study the deposition and dispersion of nano-particles. Different particle diameters as well as different pipe lengths and flow rates are examined. The results show good agreement between the calculated deposition efficiency and different analytic correlations in the literature. Furthermore, for the nano-particles with higher diameters and when the effect of inertia has a higher importance, the calculated deposition efficiency by the Lagrangian method is less than the analytic correlations based on Eulerian method due to statistical error or the inertia effect.
Resumo:
Aerosol deposition in cylindrical tubes is a subject of interest to researchers and engineers in many applications of aerosol physics and metrology. Investigation of nano-particles in different aspects such as lungs, upper airways, batteries and vehicle exhaust gases is vital due the smaller size, adverse health effect and higher trouble for trapping than the micro-particles. The Lagrangian particle tracking provides an effective method for simulating the deposition of nano-particles as well as micro-particles as it accounts for the particle inertia effect as well as the Brownian excitation. However, using the Lagrangian approach for simulating ultrafine particles has been limited due to computational cost and numerical difficulties. In this paper, the deposition of nano-particles in cylindrical tubes under laminar condition is studied using the Lagrangian particle tracking method. The commercial Fluent software is used to simulate the fluid flow in the pipes and to study the deposition and dispersion of nano-particles. Different particle diameters as well as different flow rates are examined. The point analysis in a uniform flow is performed for validating the Brownian motion. The results show good agreement between the calculated deposition efficiency and the analytic correlations in the literature. Furthermore, for the nano-particles with the diameter more than 40 nm, the calculated deposition efficiency by the Lagrangian method is less than the analytic correlations based on Eulerian method due to statistical error or the inertia effect.
Resumo:
In this paper, we study the issues of modeling, numerical methods, and simulation with comparison to experimental data for the particle-fluid two-phase flow problem involving a solid-liquid mixed medium. The physical situation being considered is a pulsed liquid fluidized bed. The mathematical model is based on the assumption of one-dimensional flows, incompressible in both particle and fluid phases, equal particle diameters, and the wall friction force on both phases being ignored. The model consists of a set of coupled differential equations describing the conservation of mass and momentum in both phases with coupling and interaction between the two phases. We demonstrate conditions under which the system is either mathematically well posed or ill posed. We consider the general model with additional physical viscosities and/or additional virtual mass forces, both of which stabilize the system. Two numerical methods, one of them is first-order accurate and the other fifth-order accurate, are used to solve the models. A change of variable technique effectively handles the changing domain and boundary conditions. The numerical methods are demonstrated to be stable and convergent through careful numerical experiments. Simulation results for realistic pulsed liquid fluidized bed are provided and compared with experimental data. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
AIMS The aim of the study was to examine whether differences in average diameter of low-density lipoprotein (LDL) particles were associated with total and cardiovascular mortality. METHODS AND RESULTS We studied 1643 subjects referred to coronary angiography, who did not receive lipid-lowering drugs. During a median follow-up of 9.9 years, 398 patients died, of these 246 from cardiovascular causes. We calculated average particle diameters of LDL from the composition of LDL obtained by β-quantification. When LDL with intermediate average diameters (16.5-16.8 nm) were used as reference category, the hazard ratios (HRs) adjusted for cardiovascular risk factors for death from any cause were 1.71 (95% CI: 1.31-2.25) and 1.24 (95% CI: 0.95-1.63) in patients with large (>16.8 nm) or small LDL (<16.5 nm), respectively. Adjusted HRs for death from cardiovascular causes were 1.89 (95% CI: 1.32-2.70) and 1.54 (95% CI: 1.06-2.12) in patients with large or small LDL, respectively. Patients with large LDL had higher concentrations of the inflammatory markers interleukin (IL)-6 and C-reactive protein than patients with small or intermediate LDL. Equilibrium density gradient ultracentrifugation revealed characteristic and distinct profiles of LDL particles in persons with large (approximately even distribution of intermediate-density lipoproteins and LDL-1 through LDL-6) intermediate (peak concentration at LDL-4) or small (peak concentration at LDL-6) average LDL particle diameters. CONCLUSIONS Calculated LDL particle diameters identify patients with different profiles of LDL subfractions. Both large and small LDL diameters are independently associated with increased risk mortality of all causes and, more so, due to cardiovascular causes compared with LDL of intermediate size.
Resumo:
The goal of this study was to test the hypothesis that the aggregated state of natural marine particles constrains the sensitivity of optical beam attenuation to particle size. An instrumented bottom tripod was deployed at the 12-m node of the Martha's Vineyard Coastal Observatory to monitor particle size distributions, particle size-versus-settling-velocity relationships, and the beam attenuation coefficient (c(p)) in the bottom boundary layer in September 2007. An automated in situ filtration system on the tripod collected 24 direct estimates of suspended particulate mass (SPM) during each of five deployments. On a sampling interval of 5 min, data from a Sequoia Scientific LISST 100x Type B were merged with data from a digital floc camera to generate suspended particle volume size distributions spanning diameters from approximately 2 mu m to 4 cm. Diameter-dependent densities were calculated from size-versus-settling-velocity data, allowing conversion of the volume size distributions to mass distributions, which were used to estimate SPM every 5 min. Estimated SPM and measured c(p) from the LISST 100x were linearly correlated throughout the experiment, despite wide variations in particle size. The slope of the line, which is the ratio of c(p) to SPM, was 0.22 g m(-2). Individual estimates of c(p):SPM were between 0.2 and 0.4 g m(-2) for volumetric median particle diameters ranging from 10 to 150 mu m. The wide range of values in c(p):SPM in the literature likely results from three factors capable of producing factor-of-two variability in the ratio: particle size, particle composition, and the finite acceptance angle of commercial beam-transmissometers.
Resumo:
With increasing industry interest in high pressure roll grinding (HPGR) technology, there is a strong incentive for improved understanding of the nature of grinding pressure that exists in the interior of a compressed particle bed. This corresponds to the crushing region of the HPGR. The relationship between applied pressure (stress) to the particle bed and induced pressure (stress) within particles and at contact points between particles is of particular interest. A detailed parametric investigation is beyond the scope of this exploratory paper. However, this exploratory investigation does suggest some interesting behaviour. The compressed particle bed within an 80 turn diameter piston has been modelled using Particle Flow Code for three dimensions. PFC3D is a discrete element code. The total number of simulated particles was 1225 and 2450 for two beds of different thickness. Particle diameters were uniformly distributed between 4 and 4.5 mm. The results of the simulations show that stress intensity within the simulated particle beds and within the observed particles increased with increase of the applied stress. The intensity of the average vertical stress in the selected particles tended to be comparable with the intensity of the pressure applied to the surface of particle bed and was only occasionally higher. However, the stress at contact points between particles could be several times higher. In a real crusher, such high stress amplification at contacts will quickly decrease due to local crushing and a resultant increase the size of the contact area. Therefore, its significance is likely to be relatively small in an industrial context. The modelling results also suggest that failure within the particle bed will progress from the crushing surface towards the depth of the bed. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The structure-building phenomena within clay aggregates are governed by forces acting between clay particles. The nature of such forces is important to understand in order to manipulate the aggregate structure for applications such as settling and dewatering. A parallel particle orientation is required when conducting force measurements acting between the basal planes of clay mineral platelets using atomic force microscopy (AFM). In order to prepare a film of clay particles with the optimal orientation for conducting AFM measurements, the influences of particle concentration in suspension, suspension pH and particle size on the clay platelet orientation were investigated using scanning electron microscopy (SEM) and X-ray diffraction (XRD) methods. From these investigations, we conclude that high clay (dry mass) concentrations and larger particle diameters (up to 5 µm) in suspension result in random orientation of platelets on the substrate. The best possible laminar orientation in the clay dried film as represented in the XRD by the 001/020 intensity ratio of more than 150 and by SE micrograph assessments, was obtained by drying thin layers from 0.2 wt% of -5 µm clay suspensions at pH 10.5. These dried films are stable and suitable for close-approach AFM studies in solution.
Resumo:
A novel method has been developed to synthesize mesoporous silica spheres using commercial silica colloids (SNOWTEX) as precursors and electrolytes (ammonium nitrate and sodium chloride) as destabilizers. Crosslinked polyacrylamide hydrogel was used as a temporary barrier to obtain dispersible spherical mesoporous silica particles. The influences of synthesis conditions including solution composition and calcination temperature on the formation of the mesoporous silica particles were systematically investigated. The structure and morphology of the mesoporous silica particles were characterized via scanning electron microscopy (SEM) and N2 sorption technique. Mesoporous silica particles with particle diameters ranging from 0.5 to 1.6 μm were produced whilst the BET surface area was in the range of 31-123 m2 g-1. Their pore size could be adjusted from 14.1 to 28.8 nm by increasing the starting particle diameter from 20-30 nm up to 70-100 nm. A simple and cost effective method is reported that should open up new opportunities for the synthesis of scalable host materials with controllable structures.
Resumo:
This study investigates the morphology, microstructure and surface composition of Diesel engine exhaust particles. The state of agglomeration, the primary particle size and the fractal dimension of exhaust particles from petroleum Diesel (petrodiesel) and biodiesel blends from microalgae, cotton seed and waste cooking oil were investigated by means of high resolution transmission electron microscopy. With primary particle diameters between 12-19 nm, biodiesel blend primary particles are found to be smaller than petrodiesel ones (21±2 nm). Also it was found that soot agglomerates from biodiesels are more compact and spherical, as their fractal dimensions are higher, e.g. 2.2±0.1 for 50% algae biodiesel compared to 1.7±0.1 for petrodiesel. In addition, analysis of the chemical composition by means of x-ray photoelectron spectroscopy revealed an up to a factor of two increased oxygen content on the primary particle surface for biodiesel. The length, curvature and distance of graphene layers were measured showing a greater structural disorder for biodiesel with shorter fringes of higher tortuosity. This change in carbon chemistry may reflect the higher oxygen content of biofuels. Overall, it seems that the oxygen content in the fuels is the underlying reason for the observed morphological change in the resulting soot particles.
Resumo:
Using intensity autocorrelation of multiply scattered light, we show that the increase in interparticle interaction in dense, binary colloidal fluid mixtures of particle diameters 0.115µm and 0.089µm results in freezing into a crystalline phase at volume fraction? of 0.1 and into a glassy state at?=0.2. The functional form of the field autocorrelation functiong (1)(t) for the binary fluid phase is fitted to exp[??(6k 0 2 D eff t)1/2] wherek 0 is the magnitude of the incident light wavevector and? is a parameter inversely proportional to the photon transport mean free pathl*. TheD eff is thel* weighted average of the individual diffusion coefficients of the pure species. Thel* used in calculatingD eff was computed using the Mie theory. In the solid (crystal or glass) phase, theg (1)(t) is fitted (only with a moderate success) to exp[??(6k 0 2 W(t))1/2] where the mean-squared displacementW(t) is evaluated for a harmonically bound overdamped Brownian oscillator. It is found that the fitted parameter? for both the binary and monodisperse suspensions decreases significantly with the increase of interparticle interactions. This has been justified by showing that the calculated values ofl* in a monodisperse suspension using Mie theory increase very significantly with the interactions incorporated inl* via the static structure factor.
Resumo:
The effect of base dissipation on the granular flow down an inclined plane is examined by altering the coefficient of restitution between the moving and base particles in discrete element (DE) simulations. The interaction laws between two moving particles are kept fixed, and the coefficient of restitution (damping constant in the DE simulations) between the base and moving particles are altered to reduce dissipation, and inject energy from the base. The energy injection does result in an increase in the strain rate by up to an order of magnitude, and the temperature by up to two orders of magnitude at the base. However, the volume fraction, strain rate and temperature profiles in the bulk (above about 15 particle diameters from the base) are altered very little by the energy injection at the base. We also examine the variation of h(stop), the minimum height at the cessation of flow, with energy injection from the base. It is found that at a fixed angle of inclination, h(stop) decreases as the energy dissipation at the base decreases.
Resumo:
Particle simulations based on the discrete element method are used to examine the effect of base roughness on the granular flow down an inclined plane. The base is composed of a random configuration of fixed particles, and the base roughness is decreased by decreasing the ratio of diameters of the base and moving particles. A discontinuous transition from a disordered to an ordered flow state is observed when the ratio of diameters of base and moving particles is decreased below a critical value. The ordered flowing state consists of hexagonally close packed layers of particles sliding over each other. The ordered state is denser (higher volume fraction) and has a lower coordination number than the disordered state, and there are discontinuous changes in both the volume fraction and the coordination number at transition. The Bagnold law, which states that the stress is proportional to the square of the strain rate, is valid in both states. However, the Bagnold coefficients in the ordered flowing state are lower, by more than two orders of magnitude, in comparison to those of the disordered state. The critical ratio of base and moving particle diameters is independent of the angle of inclination, and varies very little when the height of the flowing layer is doubled from about 35 to about 70 particle diameters. While flow in the disordered state ceases when the angle of inclination decreases below 20 degrees, there is flow in the ordered state at lower angles of inclination upto 14 degrees. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4710543]
Resumo:
A simple two-dimensional square cavity model is used to study shock attenuating effects of dust suspension in air. The GRP scheme for compressible flows was extended to simulate the fluid dynamics of dilute dust suspensions, employing the conventional two-phase approximation. A planar shock of constant intensity propagated in pure air over Aat ground and diffracted into a square cavity filled with a dusty quiescent suspension. Shock intensities were M-s = 1.30 and M-s = 2.032, dust loading ratios were alpha = 1 and alpha = 5, and particle diameters were d = 1, 10 and 50 mum. It was found that the diffraction patterns in the cavity were decisively attenuated by the dust suspension, particularly for the higher loading ratio. The particle size has a pronounced effect on the flow and wave pattern developed inside the cavity. Wall pressure historics were recorded for each of the three cavity walls, showing a clear attenuating effect of the dust suspension.
Resumo:
In this paper, a simple route for the preparation of Pt nanoparticles is described. PtCl62- and [tetrakis-(N-methylpyridyl)porphyrinato] cobalt (CoTMPyP) were assembled on a 4-aminobenzoic acid modified glassy carbon electrode through the layer-by-layer method. The three-dimensional Pt nanoparticle films are directly formed on an electrode surface by electrochemical reduction of PtCl62- sandwiched between CoTMPyP layers. Regular growth of the multilayer films is monitored by UV-vis spectroscopy. X-ray photoelectron spectroscopy verifies the constant composition of the multilayer films containing Pt nanoparticles. Atomic force microscopy proves that the as-prepared Pt nanoparticles are uniformily distributed with average particle diameters of 6-10 nm. The resulting multilayer films containing Pt nanoparticles on the modified electrode possess catalytic activity for the reduction of dissolved oxygen. Rotating disk electrode voltammetry and rotating ring-disk electrode voltammetry confirm that Pt nanoparticle containing films can catalyze an almost four-electron reduction of O-2 to water in 0.5 M H2SO4 solution.
Resumo:
Near-infrared (NIR) imaging was used to observe water vapour flow in a gas-solid fluidized bed reactor. The technique consisted of a broadband light, an optical filter with a bandwidth centred on strong water vapour absorptions, a Vidicon NIR camera, a nozzle from which an optically active mixture of gas and water vapour was trans-illuminated by an NIR beam and collected data of transmittance were normalized to actual optical path. The procedure was applied to a thin fluidized bed reactor with a low aspect ratio of tube to particle diameters (D-1/d(p)) in order to validate the wall effect on flow dynamics and mass transfer during the reduction of ceria-silica by hydrogen. High concentrations of water vapour emerged in the vicinity of the wall when the bed was operated at pseudo-static conditions but disappeared when the bed was run at minimum bubbling conditions. This result shows the capability of optical methods with affordable costs to 2D imaging opaque packed bed by using a spatially resolved probe located at the exit, which is of great benefit for in situ visualization of anisotropic concentrations in packed beds under industrially relevant conditions and thus for elucidation of the underlying reaction mechanism and diffusion interactions. Crown Copyright (c) 2011 Published by Elsevier B.V. All rights reserved.