247 resultados para Parasitoids


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypsipyla grandella (Zeller) is the most important insect pest of the Meliaceae in the Neotropics. This paper reviews the information on H. grandella parasitoids in Latin America and the Caribbean. Preliminary data on the parasitoid complex in Turrialba, Costa Rica, are presented, where apparent parasitisation of H. grandella during 1995–1996 reached 36%. The lowest level of parasitisation occurred during the dry season. The parasitoid Apanteles sp. (= Hypomicrogaster hypsipylae de Santis?) (Hymenoptera: Braconidae) was the most abundant larval parasitoid with a mean of 22 parasitoids per parasitised larva and a sex ratio of 3:1 females to males. Brachymeria conica Ashmead (Hymenoptera: Chalcididae) was found parasitising pupae, but at low frequency

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field surveys of egg parasitoids of the diamondback moth, Plutella xylostella, were conducted at Redlands and Gatton, south-east Queensland. Eggs of P. xylostella were present all year round in both localities, and parasitized eggs were consistently found between late spring and early winter. Percent parasitism in the range 30–75% was recorded on many occasions, although rates less than 10% were more common. The major parasitoids included Trichogrammatoidea bactrae Nagaraja and Trichogramma pretiosum Riley. Laboratory evaluation showed that the T. pretiosum from Gatton has a high capacity to parasitize P. xylostella eggs under suitable conditions. This study represents the first record of egg parasitoids of P. xylostella from Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To quantify the role of Johnson grass, Sorghum halepense, in the population dynamics of the sorghum midge, Stenodiplosis sorghicola, patterns of flowering of Johnson grass and infestation by sorghum midge were studied in two different climatic environments in the Lockyer Valley and on the Darling Downs in south-eastern Queensland for 3 years. Parasitism levels of S. sorghicola were also recorded. In the Lockyer Valley, Johnson grass panicles were produced throughout the year but on the Darling Downs none were produced between June and September. In both areas, most panicle production occurred between November and March and infestation by S. sorghicola was the greatest during this period. The parasitism levels were between 20% and 50%. After emergence from winter diapause, one to two generations of S. sorghicola developed on S. halepense before commercial grain sorghum crops were available for infestation. Parasitoids recorded were: Aprostocetus diplosidis, Eupelmus australiensis and two species of Tetrastichus. Relationships between sorghum midge population growth rate and various environmental and population variables were investigated. Population size had a significant negative effect (P < 0.0001) on population growth rate. Mortality due to parasitism showed a significant positive density response (P < 0.0001). Temperature, rainfall, open pan evaporation, degree-days and host availability showed no significant effect on population growth rate. Given the phenology of sorghum production in south-eastern Queensland, Johnson grass provides an important bridging host, sustaining one to two generations of sorghum midge. Critical studies relating population change and build-up in sorghum to sorghum midge populations in Johnson grass are yet to be performed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Painted apple moth Teia anartoides Walker (Lepidoptera: Lymantriidae), a native to Australia, was discovered in Auckland, New Zealand in late 1999 and eradicated by 2006. It was recognised in 2002 that biological control would be the most effective long-term control strategy if eradication was unsuccessful, and a search was initiated for potential biocontrol agents in Australia. In 2003, autumn and spring surveys were undertaken in Victoria, Tasmania and South Australia of the guild of parasitoid natural enemies of T. anartoides. Eggs, larvae and pupae were collected and held to rear out any parasitoids. In addition, localised searches were made in Queensland in late 2003 early 2004 and laboratory-reared juvenile stages of T. anartoides were released for recapture in both Victoria and Queensland. Acacia dealbata Link (Fabales: Fabaceae) was the main plant from which T. anartoides was recovered, followed by apple. Most T. anartoides samples were collected from Victoria and Tasmania. Eighteen species from 13 genera of egg, larval and pupal parasitoids were reared and included Diptera (Tachinidae) and Hymenoptera (Braconidae, Encyrtidae, Eulophidae and Ichneumonidae). Of the seven Hymenopteran genera recovered from the larval stage, the most common in Victoria and Tasmania was a previously unidentified larval parasitoid Cotesia Cameron (Hymenoptera: Braconidae) sp. Echthromorpha intricatoria (Fabricius) (Hymenoptera: Ichneumonidae) was the dominant pupal parasitoid. The survey showed that the parasitoid complex associated with T anartoides is structurally very similar to that on other pest Lymantriidae in the northern hemisphere such as gypsy moth (Lymantria dispar L.) (Lepidoptera: Lymantriidae). Meteorus pulchricornis (Wesmael) (Hymenoptera: Braconidae) was recorded for the first time in Australia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review of aphid parasitoids in China with special emphasis on their production, utilization, and conservation is presented with a brief history of Chinese biological control. Twenty genera, 99 species of Aphidiidae and two genera, 11 species of Aphelinidae were recorded in China. Each parasitoid is listed with a brief description of aphids, host plants, areas of study such as taxonomy, biology, bionomics, geographic distribution, rearing, and literature citations. Achievements, status, and problems in aphid parasitoid production, utilization, conservation, and future prospects are detailed for dominant aphid parasitoids such as Aphidius gifuensis Ashmead, A. ervi Haliday and Aphelinus mali Haldeman. Finally, opportunities and challenges of commercialization commercialization of natural enemies, especially aphid parasitoids, in China, are analyzed and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’environnement façonne la physiologie, la morphologie et le comportement des organismes par l’entremise de processus écologiques et évolutifs complexes et multidimensionnels. Le succès reproducteur des animaux est déterminé par la valeur adaptative d’un phénotype dans un environnement en modification constante selon une échelle temporelle d’une à plusieurs générations. De plus, les phénotypes sont façonnés par l’environnement, ce qui entraine des modifications adaptatives des stratégies de reproduction tout en imposant des contraintes. Dans cette thèse, considérant des punaises et leurs parasitoïdes comme organismes modèles, j’ai investigué comment plusieurs types de plasticité peuvent interagir pour influencer la valeur adaptative, et comment la plasticité des stratégies de reproduction répond à plusieurs composantes des changements environnementaux (qualité de l’hôte, radiation ultraviolette, température, invasion biologique). Premièrement, j’ai comparé la réponse comportementale et de traits d’histoire de vie à la variation de taille corporelle chez le parasitoïde Telenomus podisi Ashmead (Hymenoptera : Platygastridae), démontrant que les normes de réaction des comportements étaient plus souvent positives que celles des traits d’histoires de vie. Ensuite, j’ai démontré que la punaise prédatrice Podisus maculiventris Say (Hemiptera : Pentatomidae) peut contrôler la couleur de ses œufs, et que la pigmentation des œufs protège les embryons du rayonnement ultraviolet; une composante d’une stratégie complexe de ponte qui a évoluée en réponse à une multitude de facteurs environnementaux. Puis, j’ai testé comment le stress thermique affectait la dynamique de la mémoire du parasitoïde Trissolcus basalis (Wollaston) (Hymenoptera : Platygastridae) lors de l’apprentissage de la fiabilité des traces chimiques laissées par son hôte. Ces expériences ont révélé que des températures hautes et basses prévenaient l’oubli, affectant ainsi l’allocation du temps passé par les parasitoïdes dans des agrégats d’hôtes contenant des traces chimiques. J’ai aussi développé un cadre théorique général pour classifier les effets de la température sur l’ensemble des aspects comportementaux des ectothermes, distinguant les contraintes des adaptations. Finalement, j’ai testé l’habileté d’un parasitoïde indigène (T. podisi) à exploiter les œufs d’un nouveau ravageur invasif en agriculture, Halyomorpha halys Stål (Hemiptera : Pentatomidae). Les résultats ont montré que T. podisi attaque les œufs de H. halys, mais qu’il ne peut s’y développer, indiquant que le ravageur invasif s’avère un « piège évolutif » pour ce parasitoïde. Cela pourrait indirectement bénéficier aux espèces indigènes de punaises en agissant comme un puits écologique de ressources (œufs) et de temps pour le parasitoïde. Ces résultats ont des implications importantes sur la réponse des insectes, incluant ceux impliqués dans les programmes de lutte biologique, face aux changements environnementaux.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of arbuscular mycorrhizal colonization of Leucanthemum vulgare on parasitism of a leaf-mining insect was studied in a field and a laboratory experiment. In the field, parasitism of Chromatomyia syngenesiae by Diglyphus isaea was lower on mycorrhizal plants, compared with plants where the association was reduced. A laboratory experiment, in which L. vulgare was inoculated with three species of AM fungi, showed that the effects on parasitism rates were mycorrhizal species-dependent. Some fungal combinations increased parasitism, some decreased it, while others had no effect. It is concluded that the most likely cause of these differences is plant size, with parasitoid searching efficiency being reduced on the larger plants, resulting from certain mycorrhizal species combinations. However, a mycorrhizal effect on herbivore-produced plant volatiles cannot be ruled out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emerging parasitoids of aphids encounter secondary plant chemistry from cues left by the mother parasitoid at oviposition and from the plant-feeding of the host aphid. In practice, however, it is secondary plant cheinistry oil the Surface of the aphid mummy which influences parasitoid olfactory behaviour. Offspring of Aphidius colemani reared oil Myzus persicae on artificial diet did no distinguish between the odours of bean and cabbage, but showed a clear preference for cabbage odour if sinigrin had been painted oil the back of the mummy. Similarly Aphidius rhopalosiphi reared on Metopolophium dirhodum on wheat preferred the odour of wheat plants grown near tomato plants to odour of wheat alone if the wheat plants oil which they had been reared had been exposed to the volatiles of nearby tomato plants. Aphidius rhopalosiphi reared on M dirhodum, and removed from the mummy before emergence, showed a preference for the odour of a different wheat cultivar if they had contacted a mummy from that cultivar, and similar results were obtained with A. colemani naturally emerged from M. persicae mummies. Aphidius colemani emerged from mummies oil one crucifer were allowed to contact in sequence (for 45 min each) mummies from two different crucifers. The mumber of attacks made in 10 min oil M. persicae was always significantly higher when aphids were feeding oil the same plant as the origin of the last MUMMY offered, or oil the second plant if aphids feeding on the third plant were not included. Chilling emerged A. colemani for 24 h at 5 degrees C appeared to erase the imprint of secondary plant chemistry, and they no longer showed host plant odour preferences in the olfactometer. When the parasitoids were chilled after three Successive mummy experiences, memory of the last experience appeared at least temporarily erased and preference was then shown for the chemistry of the second experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The evolution of host resistance to parasitoid attack will be constrained by two factors: the costs of the ability to defend against attack, and the costs of surviving actual attack. These factors have been investigated using Drosophila melanogaster and its parasitoids as a model system. The costs of defensive ability are expressed as a trade-off with larval competitive ability, whereas the costs of actual defence are exhibited in terms of reduced adult fecundity and size. 2. The costs of actual defence may be ameliorated by the host-choice decisions made by Pachycrepoideus vindemiae, a pupal parasitoid. If larvae that have successfully encapsulated a parasitoid develop into poorer quality hosts, then these may be rejected by ovipositing pupal parasitoids. 3. Pupae developing from larvae that have encapsulated the parasitoid Asobara tabida are smaller and have relatively thinner puparia. Thinner puparia are likely to be associated with a reduction in mechanical strength and possibly with a decrease in desiccation tolerance. 4. Pachycrepoideus vindemiae that develop in capsule-bearing pupae are smaller than those that emerge from previously unattacked hosts. This supports the prediction that ovipositing female P. vindemiae should avoid attacking capsule-bearing hosts. However, in choice experiments with 1-day-old pupae, P. vindemiae females oviposited preferentially in hosts containing a capsule, whereas there was no preference found with 4-day-old hosts. This appears to be a maladaptive host choice decision, as the female pupal parasitoids are preferentially attacking hosts that will result in a reduction of their own fitness. 5. The increased likelihood of attack by a pupal parasitoid is another cost of actual defence against larval parasitoid attack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An increase in resistance to one natural enemy may result in no correlated change, a positive correlated change, or a negative correlated change in the ability of the host or prey to resist other natural enemies. The type of specificity is important in understanding the evolutionary response to natural enemies and was studied here in a Drosaphila-parasitoid system. Drosophila melanogaster lines selected for increased larval resistance to the endoparasitoid wasps Asobara tabida or Leptopilina boulardi were exposed to attack by A. tabida, L. boulardi and Leptopilina heterotama at 15 degrees C, 20 degrees C, and 25 degrees C. In general, encapsulation ability increased with temperature, with the exception of the lines selected against L. boulardi, which showed the opposite trend. Lines selected against L, boulardi showed large increases in resistance against all three parasitoid species, and showed similar levels of defense against A. tabida to the lines selected against that parasitoid. In contrast, lines selected against A. tabida showed a large increase in resistance to A. tabida and generally to L. heterotoma, but displayed only a small change in their ability to survive attack by L. boulardi. Such asymmetries in correlated responses to selection for increased resistance to natural enemies may influence host-parasitoid community structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasitoids are the most important natural enemies of many insect species. Larvae of many Drosophila species can defend themselves against attack by parasitoids through a cellular immune response called encapsulation. The paper reviews recent studies of the evolutionary biology and ecological genetics of resistance in Drosophila, concentrating on D. melanogaster. The physiological basis of encapsulation, and the genes known to interfere with resistance are briefly summarized. Evidence for within- and between-population genetic variation in resistance from isofemale line, artificial selection and classical genetic studies are reviewed. There is now firm evidence that resistance is costly to Drosophila, and the nature of this cost is discussed, and the possibility that it may involve a reduction in metabolic rate considered. Comparative data on encapsulation and metabolic rates across seven Drosophila species provides support for this hypothesis. Finally, the possible population and community ecological consequences of evolution in the levels of host resistance are examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants produce volatile organic compounds (VOCs) in response to herbivore attack, and these VOCs can be used by parasitoids of the herbivore as host location cues. We investigated the behavioural responses of the parasitoid Cotesia vestalis to VOCs from a plant–herbivore complex consisting of cabbage plants (Brassica oleracea) and the parasitoids host caterpillar, Plutella xylostella. A Y-tube olfactometer was used to compare the parasitoids' responses to VOCs produced as a result of different levels of attack by the caterpillar and equivalent levels of mechanical damage. Headspace VOC production by these plant treatments was examined using gas chromatography–mass spectrometry. Cotesia vestalis were able to exploit quantitative and qualitative differences in volatile emissions, from the plant–herbivore complex, produced as a result of different numbers of herbivores feeding. Cotesia vestalis showed a preference for plants with more herbivores and herbivore damage, but did not distinguish between different levels of mechanical damage. Volatile profiles of plants with different levels of herbivores/herbivore damage could also be separated by canonical discriminant analyses. Analyses revealed a number of compounds whose emission increased significantly with herbivore load, and these VOCs may be particularly good indicators of herbivore number, as the parasitoid processes cues from its external environment

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)