976 resultados para Pain perception


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Psychological factors play a major role in exacerbating chronic pain. Effective self-management of pain is often hindered by inaccurate beliefs about the nature of pain which lead to a high degree of emotional reactivity. Probabilistic models of perception state that greater confidence (certainty) in beliefs increases their influence on perception and behavior. In this study, we treat confidence as a metacognitive process dissociable from the content of belief. We hypothesized that confidence is associated with anticipatory activation of areas of the pain matrix involved with top-down modulation of pain. Healthy volunteers rated their beliefs about the emotional distress that experimental pain would cause, and separately rated their level of confidence in this belief. Confidence predicted the influence of anticipation cues on experienced pain. We measured brain activity during anticipation of pain using high-density EEG and used electromagnetic tomography to determine neural substrates of this effect. Confidence correlated with activity in right anterior insula, posterior midcingulate and inferior parietal cortices during the anticipation of pain. Activity in the right anterior insula predicted a greater influence of anticipation cues on pain perception, whereas activity in right inferior parietal cortex predicted a decreased influence of anticipatory cues. The results support probabilistic models of pain perception and suggest that confidence in beliefs is an important determinant of expectancy effects on pain perception.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PR homology domain-containing member 12 (PRDM12) is a highly evolutionary conserved member of the Prdm family of transcription factors that play essential roles in many cell fate decisions. In human, PRDM12 coding mutations have been recently identified in several patients with hereditary sensory and autonomic neuropathy (HSAN) (submitted elsewhere). Here we show that PRDM12 is involved in sensory neurogenesis in Xenopus and that several of the human Prdm12 mutants show altered structure, subcellular localization and function. In Drosophila, we demonstrate that the sensory neuron specific RNAi knockdown of the Prdm12 ortholog Hamlet induces impaired nociception and that a similar phenotype is observed in hypomorph hamlet mutants. In human fibroblasts of patients with PRDM12 mutations, we identified additional possible downstream target genes including thyrotropin-releasing hormone degrading enzyme (TRHDE). Knock-down of fly TRHDE in sensory neurons resulted in altered nociceptive neurons and impaired nociception. Collectively, these findings provide the first evidence showing that Prdm12 plays an important role in sensory neuron development. They also suggest that it has a critical evolutionarily conserved role in pain perception via modulation of the TRH signaling pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article explores the literature concerning responses to pain of both premature and term-born newborn infants, the evidence for short-term and long-term effects of pain, and behavioral sequelae in individuals who have experienced repeated early pain in neonatal life as they mature. There is no doubt that pain causes stress in babies and this in turn may adversely affect long-term neurodevelopmental outcome. Although there are methods for assessing dimensions of acute reactivity to pain in an experimental setting, there are no very good measures available at the present time that can be used clinically. In the clinical setting repeated or chronic pain is more likely the norm rather than infrequent discrete noxious stimuli of the sort that can be readily studied. The wind-up phenomenon suggests that, exposed to a cascade of procedures as happens with clustering of care in the clinical setting in an attempt to provide periods of rest for stressed babies, an infant may in fact perceive procedures that are not normally viewed as noxious, as pain. Pain exposure during lifesaving intensive medical care of ELBW neonates may also affect subsequent reactivity to pain in the neonatal period, but behavioral differences are probably not likely to be clinically significant in the long term. Prolonged and repeated untreated pain in the newborn period, however, may produce a relatively permanent shift in basal autonomic arousal related to prior NICU pain experience, which may have long-term sequelae. In the long run, the most significant clinical effects of early pain exposure may be on neurodevelopment, contributing to later attention, learning, and behavior problems in these vulnerable children. Although there is considerable evidence to support a variety of adverse effects of early pain, there is less information about the long-term effects of opiates and benzodiazepines on the developing central nervous system. Current evidence reviewed suggests that judicious use of morphine for adjustment to mechanical ventilation may ameliorate the altered autonomic response. It may be very important, however, to distinguish stress from pain. Animal evidence suggests that the neonatal brain is affected differently when exposed to morphine administered in the absence of pain than in the presence of pain. Pain control may be important for many reasons but overuse of morphine or benzodiazepines may have undesirable long-term effects. This is a rapidly evolving area of knowledge of clear relevance to clinical management likely to affect long-term outcomes of high-risk children.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The degree to which perceived controllability alters the way a stressor is experienced varies greatly among individuals. We used functional magnetic resonance imaging to examine the neural activation associated with individual differences in the impact of perceived controllability on self-reported pain perception. Subjects with greater activation in response to uncontrollable (UC) rather than controllable (C) pain in the pregenual anterior cingulate cortex (pACC), periaqueductal gray (PAG), and posterior insula/SII reported higher levels of pain during the UC versus C conditions. Conversely, subjects with greater activation in the ventral lateral prefrontal cortex (VLPFC) in anticipation of pain in the UC versus C conditions reported less pain in response to UC versus C pain. Activation in the VLPFC was significantly correlated with the acceptance and denial subscales of the COPE inventory [Carver, C. S., Scheier, M. F., & Weintraub, J. K. Assessing coping strategies: A theoretically based approach. Journal of Personality and Social Psychology, 56, 267–283, 1989], supporting the interpretation that this anticipatory activation was associated with an attempt to cope with the emotional impact of uncontrollable pain. A regression model containing the two prefrontal clusters (VLPFC and pACC) predicted 64% of the variance in pain rating difference, with activation in the two additional regions (PAG and insula/SII) predicting almost no additional variance. In addition to supporting the conclusion that the impact of perceived controllability on pain perception varies highly between individuals, these findings suggest that these effects are primarily top-down, driven by processes in regions of the prefrontal cortex previously associated with cognitive modulation of pain and emotion regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pain and the conscious mind (or the self) are experienced in our body. Both are intimately linked to the subjective quality of conscious experience. Here, we used virtual reality technology and visuo-tactile conflicts in healthy subjects to test whether experimentally induced changes of bodily self-consciousness (self-location; self-identification) lead to changes in pain perception. We found that visuo-tactile stroking of a virtual body but not of a control object led to increased pressure pain thresholds and self-location. This increase was not modulated by the synchrony of stroking as predicted based on earlier work. This differed for self-identification where we found as predicted that synchrony of stroking increased self-identification with the virtual body (but not a control object), and positively correlated with an increase in pain thresholds. We discuss the functional mechanisms of self-identification, self-location, and the visual perception of human bodies with respect to pain perception.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Several studies show yoga may benefit chronic pain management. We investigated the effect of a single yoga session on the perception of pain, measured by a standardized pain provocation test in healthy yoga participants while also comparing pain perception to participants' own expectations. MATERIALS AND METHODS Ninety yoga participants were recruited at hatha yoga schools in Switzerland. Pain perception was measured with a standardized algometric pain provocation test; i.e., a calibrated peg was applied for 10 seconds after which the participant rated pain intensity on a 0-10 numerical rating scale. The test was applied to the middle finger, ear lobe, and second toe before and after a 60-minute yoga session. RESULTS Sixty out of 90 (66.7%) yoga participants expected a reduced pain perception after the yoga session. However, 36 (40%) participants actually experienced less pain after compared to before the yoga session. But overall, pain perception statistically did not significantly change from before to after the yoga session at any of the three body locations assessed. The expectations and also the previous yoga experience did not significantly influence the participants' pain perception. CONCLUSIONS Regardless of the high positive expectations on the influence of yoga on pain, a single yoga session does not significantly influence pain perception induced by a pain provocation test. Hypoalgesic effects of yoga should be explained otherwise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anatomical, physiological, and lesion data implicate multiple cortical regions in the complex experience of pain. These regions include primary and secondary somatosensory cortices, anterior cingulate cortex, insular cortex, and regions of the frontal cortex. Nevertheless, the role of different cortical areas in pain processing is controversial, particularly that of primary somatosensory cortex (S1). Human brain-imaging studies do not consistently reveal pain-related activation of S1, and older studies of cortical lesions and cortical stimulation in humans did not uncover a clear role of S1 in the pain experience. Whereas studies from a number of laboratories show that S1 is activated during the presentation of noxious stimuli as well as in association with some pathological pain states, others do not report such activation. Several factors may contribute to the different results among studies. First, we have evidence demonstrating that S1 activation is highly modulated by cognitive factors that alter pain perception, including attention and previous experience. Second, the precise somatotopic organization of S1 may lead to small focal activations, which are degraded by sulcal anatomical variability when averaging data across subjects. Third, the probable mixed excitatory and inhibitory effects of nociceptive input to S1 could be disparately represented in different experimental paradigms. Finally, statistical considerations are important in interpreting negative findings in S1. We conclude that, when these factors are taken into account, the bulk of the evidence now strongly supports a prominent and highly modulated role for S1 cortex in the sensory aspects of pain, including localization and discrimination of pain intensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Premature infants, who have to spend the first week of their lives in neonatal intensive care units (NICUs), experience pain and stress in numerous cases, and they are exposed to many invasive interventions. The studies have shown that uncontrolled pain experienced during early life has negative and long-term side effects, such as distress, and such experiences negatively affect the development of the central nervous system Objectives: The purpose of the study was to examine the effects of touching on infant pain perception and the effects of eutectic mixture of local anesthetic (EMLA) on the reduction of pain. Patients and Methods: Data for the study were collected between March and August 2012 from the neonatal clinic of a university hospital located in eastern Turkey. The population of the study consisted of premature infants who were undergoing treatment, completed the first month and who were approved for Hepatitis B vaccine. The study consisted of two experimental groups and one control group. Information forms, intervention follow-up forms, and Premature Infant Pain Profile (PIPP) were used to collect the data. EMLA cream was applied on the vastus lateralis muscles of the first experimental group before the vaccination. The second experimental group was vaccinated by imitation (placebo), without a needle tip or medicine. Vaccination was carried out using instrumental touch in this group. A routine vaccination was applied in the control group. Results: Mean pain scores of the group to which EMLA was applied were lower in a statistically significant way (P < 0.05) compared to the pain scores of the other groups. Moreover, it was determined that even though invasive intervention was not applied to the newborns, the touching caused them to feel pain just as in the placebo group (P < 0.005). Conclusions: The results demonstrated that EMLA was an effective method for reducing pain in premature newborns, and the use of instrumental touch for invasive intervention stimulated the pain perception in the newborns.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neurodynamic tests such as the straight leg raising (SLR) and slump test are frequently used for assessment of mechanosensitivity of neural tissues. However, there is ongoing debate in the literature regarding the contributions of neural and non-neural tissues to the elicited symptoms because many structures are affected by these tests. Sensitizing manoeuvres are limb or spinal movements added to neurodynamic tests, which aim to identify the origin of the symptoms by preferentially loading or unloading neural structures. A prerequisite for the use of sensitizing manoeuvres to identify neural involvement is that the addition of sensitizing manoeuvres has no impact on pain perception when the origin of the pain is non-neural. In this study, experimental muscle pain was induced by injection of hypertonic saline in tibialis anterior or soleus in 25 asymptomatic, naive volunteers. A first experiment investigated the impact of hip adduction, abduction, medial and lateral rotation in the SLR position. In a second experiment, the different stages of the slump test were examined. The intensity and area of experimentally induced muscle pain did not increase when sensitizing manoeuvres were added to the SLR or throughout the successive stages of the slump test. The findings of this study lend support to the validity of the use of sensitizing manoeuvres during neurodynamic testing. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Persistent pain is a commonly experienced symptom. It affects 25% of community-dwelling older adults and up to 80% of nursing home residents, and can have a major impact on quality of life and functional capacity. Unfortunately pain in older patients is often undertreated and misunderstood. Assessment of pain type and severity is important. Most older people, even with moderately impaired cognition, are able to self-report pain. Validated assessment tools using non-verbal pain cues are available for people with more advanced cognitive impairment. Management of pain in older people can be challenging. Physiological changes may impact on pain perception and the pharmacodynamics and pharmacokinetics of medications. Older people are often more sensitive to the adverse effects of analgesic medications and are at risk of drug–drug interactions due to the presence of co-morbidities and polypharmacy. In general, analgesic medications should be commenced at low doses, titrated based on effect and tolerability, and regularly reviewed. Contemporary pain management often utilises multiple analgesics in lower doses to optimise efficacy and avoid dose-related toxicity. A bio-psycho-social approach to the management of persistent pain, utilising a multidisciplinary team and including non-drug strategies, may produce the best results. The goal of pain management is not always to eliminate pain, since this may not be attainable, but rather to enhance function and improve quality of life. This article discusses persistent non-cancer pain in older people, its assessment and management, and the risks and benefits of pharmacological treatment in this population.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La douleur est une expérience multidimensionnelle comportant des aspects sensoriels, émotionnels et cognitifs. Il a été montré que cette expérience peut être modulée par des facteurs psychologiques ou des interventions cognitives comme l’attention, la distraction, l’hypnose ou les attentes. La tradition orientale suggère également que la pratique de la méditation pourrait avoir des effets analgésiques. D’un point de vue théorique, plusieurs mécanismes pourraient expliquer ces effets. Cependant, très peu d’études ont testé ces hypothèses. Les études présentées dans cette thèse avaient donc pour objectif d’examiner les mécanismes analgésiques de la méditation. Dans un premier temps, une étude psychophysique a été réalisée afin de comparer les réponses à la douleur entre des adeptes de la méditation Zen et des sujets contrôles, dans différentes conditions attentionnelles. Durant la condition attentionnelle de type « mindful », les adeptes de la méditation ont présenté une plus faible sensibilité à la douleur, des réponses attentionnelles à la douleur atypiques et une diminution de la perception de la douleur associée à l’entraînement à la méditation. Une deuxième étude a été réalisée en imagerie par résonance magnétique fonctionnelle (IRMf) avec des groupes de participants similaires. Dans une condition sans méditation, les adeptes de la méditation ont présenté de plus fortes réponses nociceptives dans les régions primaires de la douleur. Les régions cérébrales associées aux processus d’évaluation, à la mémoire et aux émotions ont quant à elles montré une diminution d’activité. De plus, cette diminution était plus importante chez les adeptes de la méditation les plus expérimentés et elle était associée à des évaluations de douleur plus faibles. Par ailleurs, des changements de connectivité fonctionnelle entre le cortex préfrontal et une région primaires de la douleur étaient associés à la sensibilité à la douleur chez les adeptes de la méditation. Finalement, une étude d’imagerie cérébrale structurale (publiée comme deux études séparées) a été réalisée pour examiner les différences d’épaisseur corticale entre les groupes, pour des régions associées à la douleur. Les adeptes de la méditation ont présenté une épaisseur plus importante de matière grise dans plusieurs régions associées à la douleur et l’attention. De plus, ces différences étaient associées à une mesure expérientielle de l’attention, à la sensibilité à la douleur et à l’expérience de méditation. Dans l’ensemble, ces résultats suggèrent que la méditation pourrait influencer la perception de la douleur par des changements fonctionnels et physiques dans le cerveau. De plus, le patron d’activation et la modulation de l’expérience paraissent uniques en comparaison à ceux d’autres interventions, ce qui suggère qu’un état de détachement et un focus mental favorisent la dissociation entre les aspects désagréables et sensoriels d’un stimulus nociceptif.