972 resultados para PURKINJE-CELL DEGENERATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purkinje cell degeneration (pcd) mice are characterized by death of virtually all cerebellar Purkinje cells by postnatal day 30. In this study, we used DNA microarray analysis to investigate differences in gene expression between the brains of wild type and pcd mice on postnatal day 20, before the appearance of clear-cut phenotypic abnormalities. We identified 300 differentially expressed genes, most of which were involved in metabolic and physiological processes. Among the differentially expressed genes were several calcium binding proteins including calbindin -28k, paravalbumin, matrix gamma-carboxygluta mate protein and synaptotagamins 1 and 13, suggesting the involvement of abnormal Ca2+ signaling in the pcd phenotype.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purkinje cell degeneration (pcd) mice have a mutation within the gene encoding cytosolic carboxypeptidase 1 (CCP1/Nna1), which has homology to metallocarboxypeptidases. To assess the function of CCP1/Nna1, quantitative proteomics and peptidomics approaches were used to compare proteins and peptides in mutant and wild-type mice. Hundreds of peptides derived from cytosolic and mitochondrial proteins are greatly elevated in pcd mouse hypothalamus, amygdala, cortex, prefrontal cortex, and striatum. However, the major proteins detected on 2-D gel electrophoresis were present in mutant and wild-type mouse cortex and hypothalamus at comparable levels, and proteasome activity is normal in these brain regions of pcd mice, suggesting that the increase in cellular peptide levels in the pcd mice is due to reduced degradation of the peptides downstream of the proteasome. Both nondegenerating and degenerating regions of pcd mouse brain, but not wild-type mouse brain, show elevated autophagy, which can be triggered by a decrease in amino acid levels. Taken together with previous studies on CCP1/Nna1, these data suggest that CCP1/Nna1 plays a role in protein turnover by cleaving proteasome-generated peptides into amino acids and that decreased peptide turnover in the pcd mice leads to cell death.-Berezniuk, I., Sironi, J., Callaway, M. B., Castro, L. M., Hirata, I. Y., Ferro, E. S., Fricker, L. D. CCP1/Nna1 functions in protein turnover in mouse brain: Implications for cell death in Purkinje cell degeneration mice. FASEB J. 24, 1813-1823 (2010). www.fasebj.org

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Mutations in the Prominin-1 (Prom1) gene are known to cause retinitis pigmentosa and Stargardt disease, both of which are associated with progressive photoreceptor cell death. There are no effective therapies for either disorder. The aim of this study was to investigate the mechanism of the retinal degeneration in Prom1-deficient mouse models.

METHODS: We constructed Prom1 knockout mice with two distinct genetic backgrounds of C57BL/6 and C57BL/6xCBA/NSlc, and investigated the photoreceptor degeneration by means of histology and functional tests.. In addition, we examined the effect of light on the Prom1(-/-) retina by rearing the mice in the normal light/dark cycle and completely dark conditions. Finally, we investigated if the retinoic-acid derivative Fenretinide slowed the pace of retinal degeneration in these mouse models.

RESULTS: The Prom1(-/-)-knockout mice with both backgrounds developed photoreceptor degeneration after eye opening, but the CB57/BL6-background mice developed photoreceptor cell degeneration much faster than the C57BL/6xCBA/NSlc mice, demonstrating genetic background dependency.. Interestingly, our histologic and functional examination showed that the photoreceptor cell degeneration of Prom1-knockout mice was light-dependent, and was almost completely inhibited when the mutant mice were kept in the dark. The Prom1-knockout retina showed strong downregulation of expression of the visual cycle components, Rdh12 and Abca4. Furthermore, administration of Fenretinide, which lowers the level of the toxic lipofuscin, slowed the degeneration of photoreceptor cells.

CONCLUSIONS: These findings improve our understanding of the mechanism of cell death in Prominin-1-related disease and provide evidence that fenretinide may be worth studying in human disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As proteínas existentes nas células são produzidas pelo mecanismo de tradução do mRNA, no qual a informação genética contida nos genes é descodificada em cadeias polipeptídicas. O código genético, que define as regras de descodificação do genoma, minimiza os erros de tradução do mRNA, garantindo a síntese de proteínas com elevada fidelidade. Esta é essencial para a estabilidade do proteoma e para a manutenção e funcionamento dos processos celulares. Em condições fisiológicas normais, os erros da tradução do mRNA ocorrem com frequências que variam de 10-3 a 10-5 erros por codão descodificado. Situações que aumentam este erro basal geralmente estão associadas ao envelhecimento, stresse e a doenças; no entanto, em certos organismos o código genético é traduzido naturalmente com elevado erro, indicando que a síntese de proteínas aberrantes pode de algum modo ser vantajosa. A fim de estudar a resposta celular aos erros de tradução do mRNA, construímos leveduras que incorporam serina no proteoma em resposta a um codão de leucina, usando a expressão constitutiva de um tRNASer mutante. Este fenómeno genético artificial provocou uma forte diminuição da esporulação, da viabilidade e da eficiência de mating, afectando imensamente a reprodução sexual da levedura. Observou-se também uma grande heterogeneidade no tamanho e na forma das células e elevada instabilidade genómica, com o aparecimento de populações poliplóides e aneuplóides. No sentido de clarificar as bases celulares e moleculares daqueles fenótipos e compreender melhor a biologia do erro de tradução do mRNA, construímos também células de levedura que inserem serina em resposta a um codão de leucina de modo indutível e controlado. Utilizaram-se perfis de mRNA total e de mRNA associado a polissomas para elucidar a resposta celular ao erro de tradução do mRNA. Observou-se a indução de genes envolvidos na resposta ao stresse geral, stresse oxidativo e na unfolded protein response (UPR). Um aumento significativo de espécies reactivas de oxigénio (ROS) e um forte impacto negativo na capacidade das células pós-mitóticas re-iniciarem o crescimento foram também observados. Este fenótipo de perda de viabilidade celular foi resgatado por scavangers de ROS, indicando que o stresse oxidativo é a principal causa de morte celular causada pelos erros de tradução. Este estudo levanta a hipótese de que o stresse oxidativo e a acumulação de ROS, ao invés do colapso súbito do proteoma, são as principais causas da degeneração celular e das doenças humanas associadas aos erros de tradução do genoma. ABSTRACT: Proteins are synthesized through the mechanism of translation, which uses the genetic code to transform the nucleic acids based information of the genome into the amino acids based information of the proteome. The genetic code evolved in such a manner that translational errors are kept to a minimum and even when they occur their impact is minimized by similar chemical properties of the amino acids. Protein synthesis fidelity is essential for proteome stability and for functional maintenance of cellular processes. Indeed, under normal physiological conditions, mistranslation occurs at frequencies that range from 10-3 to 10-5 errors per codon decoded. Situations where this basal error frequency increases are usually associated to aging and disease. However, there are some organisms where genetic code errors occur naturally at high level, suggesting that mRNA mistranslation can somehow be beneficial. In order to study the cellular response to mRNA mistranslation, we have engineered single codon mistranslation in yeast cells, using constitutive expression of mutant tRNASer genes. These mistranslating strains inserted serines at leucine-CUG sites on a proteome wide scale due to competition between the wild type tRNALeu with the mutant tRNASer. Such mistranslation event decreased yeast sporulation, viability and mating efficiencies sharply and affected sexual reproduction strongly. High heterogeneity in cell size and shape and high instability in the genome were also observed, with the appearance of some polyploid or aneuploid cell populations. To further study the cellular and molecular basis of those phenotypes and the biology of mRNA mistranslation, we have also engineered inducible mRNA misreading in yeast and used total mRNA and polysome associated mRNA profiling to determine whether codon misreading affects gene expression. Induced mistranslation up-regulated genes involved in the general stress response, oxidative stress and in the unfolded protein response (UPR). A significant increase in reactive oxygen species (ROS) and a strong negative impact on the capacity of post-mitotic cells to re-initiate growth in fresh media were also observed. This cell viability phenotype was rescued by scavengers of ROS, indicating that oxidative stress is the main cause of cell death caused by mRNA mistranslation. This study provides strong support for the hypothesis that oxidative stress and ROS accumulation, rather than sudden proteome collapse or major proteome disruption, are the main cause of the cellular degeneration observed in human diseases associated mRNA mistranslation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the ultrastructural aspects of pre-pupae and pupae ovaries of Dermatobia hominis. Physiological degeneration of gonial cells was observed: (a) after the ovarioles differentiation, in the oogonia residing in the apical region of the ovary; (b) at the beginning of vitellogenesis, in the cystoblasts close to the terminal filament. The significance of gonial cell degeneration was correlated with the physiological changes wich occur in the ovary during development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a childhood-onset neurological disease resulting from mutations in the SACS gene encoding sacsin, a 4,579-aa protein of unknown function. Originally identified as a founder disease in Québec, ARSACS is now recognized worldwide. Prominent features include pyramidal spasticity and cerebellar ataxia, but the underlying pathology and pathophysiological mechanisms are unknown. We have generated an animal model for ARSACS, sacsin knockout mice, that display age-dependent neurodegeneration of cerebellar Purkinje cells. To explore the pathophysiological basis for this observation, we examined the cell biological properties of sacsin. We show that sacsin localizes to mitochondria in non-neuronal cells and primary neurons and that it interacts with dynamin-related protein 1, which participates in mitochondrial fission. Fibroblasts from ARSACS patients show a hyperfused mitochondrial network, consistent with defects in mitochondrial fission. Sacsin knockdown leads to an overly interconnected and functionally impaired mitochondrial network, and mitochondria accumulate in the soma and proximal dendrites of sacsin knockdown neurons. Disruption of mitochondrial transport into dendrites has been shown to lead to abnormal dendritic morphology, and we observe striking alterations in the organization of dendritic fields in the cerebellum of knockout mice that precedes Purkinje cell death. Our data identifies mitochondrial dysfunction/mislocalization as the likely cellular basis for ARSACS and indicates a role for sacsin in regulation of mitochondrial dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinal ganglion cell degeneration underlies the pathophysiology of diseases affecting the retina and optic nerve. Several studies have previously evidenced the anti-apoptotic properties of the bile constituent, tauroursodeoxycholic acid, in diverse models of photoreceptor degeneration. The aim of this study was to investigate the effects of systemic administration of tauroursodeoxycholic acid on N-methyl-D-aspartate (NMDA)-induced damage in the rat retina using a functional and morphological approach. Tauroursodeoxycholic acid was administered intraperitoneally before and after intravitreal injection of NMDA. Three days after insult, full-field electroretinograms showed reductions in the amplitudes of the positive and negative-scotopic threshold responses, scotopic a- and b-waves and oscillatory potentials. Quantitative morphological evaluation of whole-mount retinas demonstrated a reduction in the density of retinal ganglion cells. Systemic administration of tauroursodeoxycholic acid attenuated the functional impairment induced by NMDA, which correlated with a higher retinal ganglion cell density. Our findings sustain the efficacy of tauroursodeoxycholic acid administration in vivo, suggesting it would be a good candidate for the pharmacological treatment of degenerative diseases coursing with retinal ganglion cell loss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marinesco-Sjögren syndrome (MSS) is a rare autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia due to cerebellar cortical atrophy, infantile- or childhood-onset bilateral cataracts, progressive myopathy, and mild to severe mental retardation. Additional features include hypergonadotropic hypogonadism, various skeletal abnormalities, short stature, and strabismus. The neuroradiologic hallmarks are hypoplasia of both the vermis and cerebellar hemispheres. The histopathologic findings include severe cerebellar atrophy and loss of Purkinje and granule cells. The common pathologic findings in muscle biopsy are variation in muscle fiber size, atrophic fibers, fatty replacement, and rimmed vacuole formation. The presence of marked cerebellar atrophy with myopathy distinguishes MSS from another rare syndrome, the congenital cataracts, facial dysmorphism, and neuropathy syndrome (CCFDN). Previously, work by others had resulted in the identification of an MSS locus on chromosome 5q31. A subtype of MSS with myoglobinuria and neuropathy had been linked to the CCFDN locus on chromosome 18qter, at which mutations in the CTDP1 gene had been identified. We confirmed linkage to the previously identified locus on chromosome 5q31 in two Finnish families with eight affected individuals, reduced the critical region by fine-mapping, and identified SIL1 as a gene underlying MSS. We found a common homozygous founder mutation in all Finnish patients. The same mutation was also present in patient samples from Norway and Sweden. Altogether, we identified eight mutations in SIL1, including nonsense, frameshift, splice site alterations, and one missense mutation. SIL1 encodes a nucleotide exchange factor for the endoplasmic reticulum (ER) resident heat-shock protein 70 chaperone GRP78. GRP78 functions in protein synthesis and quality control of the newly synthesized polypeptides. It senses and responds to stressful cellular conditions. We showed that in mice, SIL1 and GRP78 show highly similar spatial and temporal tissue expression in developing and mature brain, eye, and muscle. Studying endogenous proteins in mouse primary hippocampal neurons, we found that SIL1 and GRP78 colocalize and that SIL1 localizes to the ER. We studied the subcellular localization of two mutant proteins, a missense mutant found in two patients and an artificial mutant lacking the ER retrieval signal, and found that both mutant proteins formed aggregates within the ER. Well in line with our findings and the clinical features of MSS, recent work by Zhao et al. showed that a truncation of SIL1 causes ataxia and cerebellar Purkinje cell loss in the naturally occurring woozy mutant mouse. Prior to Purkinje cell degeneration, the unfolded protein response is initiated and abnormal protein accumulations are present. MSS thus joins the group of protein misfolding and accumulation diseases. These findings highlight the importance of SIL1 and the role of the ER in neuronal function and survival. The results presented in this thesis provide tools for the molecular genetic diagnostics of MSS and give a basis for future studies on the molecular pathogenesis of MSS. Understanding the mechanisms behind this pleiotropic syndrome may provide insights into more common forms of ataxia, myopathy, and neurodegeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

P>Many hemoglobin-derived peptides are present in mouse brain, and several of these have bioactive properties including the hemopressins, a related series of peptides that bind to cannabinoid CB1 receptors. Although hemoglobin is a major component of red blood cells, it is also present in neurons and glia. To examine whether the hemoglobin-derived peptides in brain are similar to those present in blood and heart, we used a peptidomics approach involving mass spectrometry. Many hemoglobin-derived peptides are found only in brain and not in blood, whereas all hemoglobin-derived peptides found in heart were also seen in blood. Thus, it is likely that the majority of the hemoglobin-derived peptides detected in brain are produced from brain hemoglobin and not erythrocytes. We also examined if the hemopressins and other major hemoglobin-derived peptides were regulated in the Cpefat/fat mouse; previously these mice were reported to have elevated levels of several hemoglobin-derived peptides. Many, but not all of the hemoglobin-derived peptides were elevated in several brain regions of the Cpefat/fat mouse. Taken together, these findings suggest that the post-translational processing of alpha and beta hemoglobin into the hemopressins, as well as other peptides, is up-regulated in some but not all Cpefat/fat mouse brain regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tuberous sclerosis complex (TSC) is a dominant tumor suppressor disorder caused by mutations in either TSC1 or TSC2. The proteins of these genes form a complex to inhibit the mammalian target of rapamycin complex 1 (mTORC1), which controls protein translation and cell growth. TSC causes substantial neuropathology, often leading to autism spectrum disorders (ASDs) in up to 60% of patients. The anatomic and neurophysiologic links between these two disorders are not well understood. However, both disorders share cerebellar abnormalities. Therefore, we have characterized a novel mouse model in which the Tsc2 gene was selectively deleted from cerebellar Purkinje cells (Tsc2f/-;Cre). These mice exhibit progressive Purkinje cell degeneration. Since loss of Purkinje cells is a well-reported postmortem finding in patients with ASD, we conducted a series of behavior tests to assess if Tsc2f/-;Cre mice displayed autistic-like deficits. Using the three chambered social choice assay, we found that Tsc2f/-;Cre mice showed behavioral deficits, exhibiting no preference between a stranger mouse and an inanimate object, or between a novel and a familiar mouse. Tsc2f/-;Cre mice also demonstrated increased repetitive behavior as assessed with marble burying activity. Altogether, these results demonstrate that loss of Tsc2 in Purkinje cells in a haploinsufficient background lead to behavioral deficits that are characteristic of human autism. Therefore, Purkinje cells loss and/or dysfunction may be an important link between TSC and ASD. Additionally, we have examined some of the cellular mechanisms resulting from mutations in Tsc2 leading to Purkinje cell death. Loss of Tsc2 led to upregulation of mTORC1 and increased cell size. As a consequence of increased protein synthesis, several cellular stress pathways were upregulated. Principally, these included altered calcium signaling, oxidative stress, and ER stress. Likely as a consequence of ER stress, there was also upregulation of ubiquitin and autophagy. Excitingly, treatment with an mTORC1 inhibitor, rapamycin attenuated mTORC1 activity and prevented Purkinje cell death by reducing of calcium signaling, the ER stress response, and ubiquitin. Remarkably, rapamycin treatment also reversed the social behavior deficits, thus providing a promising potential therapy for TSC-associated ASD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have isolated a dominant mutation, night blindness a (nba), that causes a slow retinal degeneration in zebrafish. Heterozygous nba fish have normal vision through 2–3 months of age but subsequently become night blind. By 9.5 months of age, visual sensitivity of affected fish may be decreased more than two log units, or 100-fold, as measured behaviorally. Electroretinographic (ERG) thresholds of mutant fish are also raised significantly, and the ERG b-wave shows a delayed implicit time. These defects are due primarily to a late-onset photoreceptor cell degeneration involving initially the rods but eventually the cones as well. Homozygous nba fish display an early-onset neuronal degeneration throughout the retina and elsewhere in the central nervous system. As a result, animals develop with small eyes and die by 4–5 days postfertilization (pf). These latter data indicate that the mutation affecting nba fish is not in a photoreceptor cell-specific gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glial cell line-derived neurotrophic factor (GDNF) promotes survival of midbrain dopaminergic neurons and motoneurons. Expression of GDNF mRNA in cerebellum raises the possibility that cells within this structure might also respond to GDNF. To examine potential trophic activities of GDNF, dissociated cultures of gestational day 18 rat cerebellum were grown for < or = 21 days in the presence of factor. GDNF increased Purkinje cell number without affecting the overall number of neurons or glial cells. A maximal response (50% above control) was elicited with GDNF at 1 pg/ml. Effects of GDNF on Purkinje cell differentiation were examined by scoring the morphologic maturation of cells in treated and control cultures. GDNF increased the proportion of Purkinje cells that displayed relatively mature morphologies, characterized by dendritic thickening and the development of spines and filopodial extensions. Morphologic maturation of the overall neuronal population was unaffected. In sum, our data indicate that GDNF is a potent survival and differentiation factor for Purkinje cells, the efferent neurons of cerebellar cortex. Together with its other actions, these findings raise the possibility that GDNF might be a critical trophic factor at multiple loci in neuronal circuits that control motor function.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis clarifies important molecular pathways that are activated during the cell death observed in Huntington’s disease. Huntington’s disease is one of the most common inherited neurodegenerative diseases, which is primarily inherited in an autosomal dominant manner. HD is caused by an expansion of CAG repeats in the first exon of the IT15 gene. IT15 encodes the production of a Huntington’s disease protein huntingtin. Mutation of the IT15 gene results in a long stretch of polyQ residues close to the amino-terminal region of huntingtin. Huntington’s disease is a fatal autosomal neurodegenerative disorder. Despite the current knowledge of HD, the precise mechanism behind the selective neuronal death, and how the disease propagates, still remains an enigma. The studies mainly focused on the control of endoplasmic reticulum (ER) stress triggered by the mutant huntingtin proteins. The ER is a delicate organelle having essential roles in protein folding and calcium regulation. Even the slightest perturbations on ER homeostasis are effective enough to trigger ER stress and its adaptation pathways, called unfolded protein response (UPR). UPR is essential for cellular homeostasis and it adapts ER to the changing environment and decreases ER stress. If adaptation processes fail and stress is excessive and prolonged; irreversible cell death pathways are engaged. The results showed that inhibition of ER stress with chemical agents are able to decrease cell death and formation of toxic cell aggregates caused by mutant huntingtin proteins. The study concentrated also to the NF-κB (nuclear factor-kappaB) pathway, which is activated during ER stress. NF-κB pathway is capable to regulate the levels of important cellular antioxidants. Cellular antioxidants provide a first line of defence against excess reactive oxygen species. Excess accumulation of reactive oxygen species and subsequent activation of oxidative stress damages motley of vital cellular processes and induce cell degeneration. Data showed that mutant huntingtin proteins downregulate the expression levels of NF-κB and vital antioxidants, which was followed by increased oxidative stress and cell death. Treatment with antioxidants and inhibition of oxidative stress were able to counteract these adverse effects. In addition, thesis connects ER stress caused by mutant huntingtin to the cytoprotective autophagy. Autophagy sustains cellular balance by degrading potentially toxic cell proteins and components observed in Huntington’s disease. The results revealed that cytoprotective autophagy is active at the early points (24h) of ER stress after expression of mutant huntingtin proteins. GADD34 (growth arrest and DNA damage-inducible gene 34), which is previously connected to the regulation of translation during cell stress, was shown to control the stimulation of autophagy. However, GADD34 and autophagy were downregulated at later time points (48h) during mutant huntingtin proteins induced ER stress, and subsequently cell survival decreased. Overexpression GADD34 enhanced autophagy and decreased cell death, indicating that GADD34 plays a critical role in cell protection. The thesis reveales new interesting data about the neuronal cell death pathways seen in Huntington’s disease, and how cell degeneration is partly counteracted by various therapeutic agents. Expression of mutant huntingtin proteins is shown to alter signaling events that control ER stress, oxidative stress and autophagy. Despite that Huntington’s disease is mainly an untreatable disorder; these findings offer potential targets and neuroprotective strategies in designing novel therapies for Huntington’s disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The cerebellum is a major supraspinal center involved in the coordination of movement. The principal neurons of the cerebellar cortex, Purkinje cells, receive excitatory synaptic input from two sources: the parallel and climbing fibers. These pathways have markedly different effects: the parallel fibers control the rate of simple sodium spikes, while the climbing fibers induce characteristic complex spike bursts, which are accompanied by dendritic calcium transients and play a key role in regulating synaptic plasticity. While many studies using a variety of species, behaviors, and cerebellar regions have documented modulation in Purkinje cell activity during movement, few have attempted to record from these neurons in unrestrained rodents. In this dissertation, we use chronic, multi-tetrode recording in freely-behaving rats to study simple and complex spike firing patterns during locomotion and sleep. Purkinje cells discharge rhythmically during stepping, but this activity is highly variable across steps. We show that behavioral variables systematically influence the step-locked firing rate in a step-phase-dependent way, revealing a functional clustering of Purkinje cells. Furthermore, we find a pronounced disassociation between patterns of variability driven by the parallel and climbing fibers, as well as functional differences between cerebellar lobules. These results suggest that Purkinje cell activity not only represents step phase within each cycle, but is also shaped by behavior across steps, facilitating control of movement under dynamic conditions. During sleep, we observe an attenuation of both simple and complex spiking, relative to awake behavior. Although firing rates during slow wave sleep (SWS) and rapid eye movement sleep (REM) are similar, simple spike activity is highly regular in SWS, while REM is characterized by phasic increases and pauses in simple spiking. This phasic activity in REM is associated with pontine waves, which propagate into the cerebellar cortex and modulate both simple and complex spiking. Such a temporal coincidence between parallel and climbing fiber activity is known to drive plasticity at parallel fiber synapses; consequently, pontocerebellar waves may provide a mechanism for tuning synaptic weights in the cerebellum during active sleep.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ionotropic gamma-amino butyric acid (GABA) receptors composed of heterogeneous molecular subunits are major mediators of inhibitory responses in the adult CNS. Here, we describe a novel ionotropic GABA receptor in mouse cerebellar Purkinje cells (PCs) using agents reported to have increased affinity for rho subunit-containing GABA(C) over other GABA receptors. Exogenous application of the GABA(C)-preferring agonist cis-4-aminocrotonic acid (CACA) evoked whole-cell currents in PCs, whilst equimolar concentrations of GABA evoked larger currents. CACA-evoked currents had a greater sensitivity to the selective GABA(C) antagonist (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA) than GABA-evoked currents. Focal application of agonists produced a differential response profile; CACA-evoked currents displayed a much more pronounced attenuation with increasing distance from the PC soma, displayed a slower time-to-peak and exhibited less desensitization than GABA-evoked currents. However, CACA-evoked currents were also completely blocked by bicuculline, a selective agent for GABA(A) receptors. Thus, we describe a population of ionotropic GABA receptors with a mixed GABA(A)/GABA(C) pharmacology. TPMPA reduced inhibitory synaptic transmission at interneurone-Purkinje cell (IN-PC) synapses, causing clear reductions in miniature inhibitory postsynaptic current (mIPSC) amplitude and frequency. Combined application of NO-711 (a selective GABA transporter subtype 1 (GAT-1) antagonist) and SNAP-5114 (a GAT-(2)/3/4 antagonist) induced a tonic GABA conductance in PCs; however, TPMPA had no effect on this current. Immunohistochemical studies suggest that rho subunits are expressed predominantly in PC soma and proximal dendritic compartments with a lower level of expression in more distal dendrites; this selective immunoreactivity contrasted with a more uniform distribution of GABA(A) alpha 1 subunits in PCs. Finally, co-immunoprecipitation studies suggest that rho subunits can form complexes with GABA(A) receptor alpha 1 subunits in the cerebellar cortex. Overall, these data suggest that rho subunits contribute to functional ionotropic receptors that mediate a component of phasic inhibitory GABAergic transmission at IN-PC synapses in the cerebellum.