994 resultados para PRUSSIAN BLUE NANOTUBES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A promising method for assembling carbon nanotubes (CNTs) and poly(diallyldimethylammonium chloride) protected Prussian blue nanoparticles (P-PB) to form three-dimensional (3D) nanostructured films is proposed. The electrostatic interaction, combined with layer-by-layer self-assembly (LBL), between negatively charged CNTs and positively charged P-PB is strong enough to drive the formation of the 3D nanostructured films. Thus, prepared multilayer films were characterized by ultraviolet-visible-near-infrared spectroscopy (UV-vis-NIR), scanning electron microscopy (SEM) and cyclic voltammetry (CV).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the fabrication of an efficient amperometric hydrogen peroxide sensor with favorable properties is presented. Prussian blue (PB) was catalytically synthesized by Pt nanoparticles (Pt-nano) from ferric ferricyanide aqueous solution to form PB@Pt-nano hybrid, and it was confirmed by transmission electron microscope (TEM) and optical spectra. The electrochemical behavior of PB@Pt-nano was highly improved through its integration with poly(diallyldimethylammonium chloride) modified carbon nanotubes (PCNTs).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical functionalization of single-walled carbon nanotubes (SWNTs) has constructed plenty of new structures with ample new properties into them. But the modification was often confined to organic molecules, either by covalence or non-covalence. In this report, SWNTs were successfully functionalized with one kind of electroactive inorganic compounds: Prussian blue (PB). And the molecular interactions between them were firstly investigated. Interestedly, pi-pi stacking interaction coupled with ionic interaction was found between SWNTs and PB. The electrochemical properties of SWNTs-PB were also investigated. It would pave a new pathway to manipulate molecular entities of SWNTs by cooperation with functional inorganic electroactive compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prussian blue (PB) was modified onto surface of SiO2 nanoparticles and multiwall carbon nanotubes (MWNTs) by electrostatic assembled method. SiO2 nanoparticles and MWNTs firstly modified by polyelectrolyte exhibited positive charges and negative charged PB could be assembled onto them. UV-vs spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), field-emitted scanning electron microscopy (FE-SEM) and electrochemical methods were used to characterize these composite nanomaterials. TEM and FE-SEM images showed that PB was easily assembled onto polyelectrolyte modified SiO2 nanoparticles and MWNTs. Moreover, PB on the surface of nanomaterials was stable and still kept its intrinsic electrochemical properties and high electrocatalytic activity towards hydrogen peroxide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a unique, single source precursor Prussian blue (iron(III) ferrocyanide (Fe-4(III)Fe-II(CN)(6)](3))) for the synthesis of Fe/Fe3C nanoparticle encapsulated N-doped graphitic layers and bamboo-like graphitic nanotubes. Hollow N-doped graphite (N-HG) nanostructures are obtained when the encapsulated nanostructures are treated with an acid. Both the encapsulated nanostructures and N-HG are shown to be applicable as bi-functional electrocatalysts for oxygen reduction (ORR) and oxygen evolution reactions (OER). The ORR activity is shown to be improved for N-HG and is comparable to commercial Pt/C. On the other hand, encapsulated nanostructures exhibit OER activity with long-term stability comparable to commercial RuO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a unique, single source precursor Prussian blue (iron(III) ferrocyanide (Fe-4(III)Fe-II(CN)(6)](3))) for the synthesis of Fe/Fe3C nanoparticle encapsulated N-doped graphitic layers and bamboo-like graphitic nanotubes. Hollow N-doped graphite (N-HG) nanostructures are obtained when the encapsulated nanostructures are treated with an acid. Both the encapsulated nanostructures and N-HG are shown to be applicable as bi-functional electrocatalysts for oxygen reduction (ORR) and oxygen evolution reactions (OER). The ORR activity is shown to be improved for N-HG and is comparable to commercial Pt/C. On the other hand, encapsulated nanostructures exhibit OER activity with long-term stability comparable to commercial RuO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyethylenimine (PEI)-protected Prussian blue nanocubes have been simply synthesized by heating an acidic mixture of PEI, FeCl3, K3Fe(CN)(6), and KCI. The experiment results presented here demonstrate that the pH of the mixture plays an important role in controlling the shape and composition of the resultant product.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, platinum nanoparticles modified with Prussian blue (PB) have been synthesized by a heterogeneous catalytic reaction. Transmission electronic microscopy (TEM) confirmed the deposition of nanoclusters around the Surfaces of platinum particles, and spectroscopic studies verified that the molecular composition of the nanoclusters was dominantly PB and a minority of platinum ferricyanide. Thus, it was shown that the platinum particles behaved not only as catalysts for the growth of PB, but also as a reactant to generate a PB analogue complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A direct borohydride-hydrogen peroxide fuel cell employing carbon-supported Prussian Blue (PB) as mediated electron-transfer cathode catalyst is reported. While operating at 30 °C, the direct borohydride-hydrogen peroxide fuel cell employing carbon-supported PB cathode catalyst shows superior performance with the maximum output power density of 68 mW cm−2 at an operating voltage of 1.1 V compared to direct borohydride-hydrogen peroxide fuel cell employing the conventional gold-based cathode with the maximum output power density of 47 mW cm−2 at an operating voltage of 0.7 V. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Analysis (EDAX) suggest that anchoring of Cetyl-Trimethyl Ammonium Bromide (CTAB) as a surfactant moiety on carbon-supported PB affects the catalyst morphology. Polarization studies on direct borohydride-hydrogen peroxide fuel cell with carbon-supported CTAB-anchored PB cathode exhibit better performance with the maximum output power density of 50 mW cm−2 at an operating voltage of 1 V than the direct borohydride-hydrogen peroxide fuel cell with carbon-supported Prussian Blue without CTAB with the maximum output power density of 29 mW cm−2 at an operating voltage of 1 V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The screen printed electrochemical glucose sensor is developed suitable for revere iontophoresis (RI) application. Glucose oxidase is immobilized on screen printed sensor using crosslinking method. Electrochemical and material characterization studies are conducted on the developed sensor and the obtained results confirm the suitability of the developed sensor for RI application. The developed sensor is validated by conducting clinical investigations on 10 human subjects through RI. A correlation is established between the blood glucose and extracted glucose, and correlation is found to be 0.73. (C) 2015 The Electrochemical Society. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyelectrolyte-functionalized ionic liquid (PFIL) and Prussian blue (PB) nanoparticles were used to fabricate ultrathin films on the ITO substrate through electrostatic layer-by-layer assembly method. Multilayer growth was examined by UV-vis spectroscopy and cyclic voltammetry. The resulting ITO/(PFIL/PB)n electrode showed two couples of well-defined redox peaks and good electrocatalytical activity towards the reduction of hydrogen peroxide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prussian blue/carbon nanotube (PB/CNT) hybrids with excellent dispersibility in aqueous solutions were synthesized by adding CNTs to an acidic solution of Fe3+, [Fe(CN)(6)](3-) and KCl. Fourier transform infrared spectroscopy, UV-vis absorption spectroscopy and scanning electron microscopy were employed to confirm the formation of PB/CNT hybrids. The PB nanoparticles formed on the CNT surfaces exhibit a narrow size distribution and an average size of 40 nm. The present results demonstrate that the selective reduction of Fe3+ to Fe2+ by CNTs is the key step for PB/CNT hybrid formation. The subsequent fabrication of the PB/CNT hybrid films was achieved by layer-by-layer technique. The thus-prepared PB/CNT hybrid films exhibit electrocatalytic activity towards H2O2 reduction.