918 resultados para PROGRESSIVE MULTIPLE-SCLEROSIS
Resumo:
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system CNS), where inflammation and neurodegeneration lead to irreversible neuronal damage. In MS, a dysfunctional immune system causes auto‐reactive lymphocytes to migrate into CNS where they initiate an inflammatory cascade leading to focal demyelination, axonal degeneration and neuronal loss. One of the hallmarks of neuronal injury and neuroinflammation is the activation of microglia. Activated microglia are found not only in the focal inflammatory lesions, but also diffusely in the normal‐appearing white matter (NAWM), especially in progressive MS. The purine base, adenosine is a ubiquitous neuromodulator in the CNS and also participates in the regulation of inflammation. The effect of adenosine mediated via adenosine A2A receptors has been linked to microglial activation, whereas modulating A2A receptors may exert neuroprotective effects. In the majority of patients, MS presents with a relapsing disease course, later advancing to a progressive phase characterised by a worsening, irreversible disability. Disease modifying treatments can reduce the severity and progression in relapsing MS, but no efficient treatment exists for progressive MS. The aim of this research was to investigate the prevalence of adenosine A2A receptors and activated microglia in progressive MS by using in vivo positron emission tomography (PET) imaging and [11C]TMSX and [11C](R)‐PK11195 radioligands. Magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI) was performed to evaluate structural brain damage. Non‐invasive input function methods were also developed for the analyses of [11C]TMSX PET data. Finally, histopathological correlates of [11C](R)‐PK11195 radioligand binding related to chronic MS lesions were investigated in post‐mortem samples of progressive MS brain using autoradiography and immunohistochemistry. [11C]TMSX binding to A2A receptors was increased in NAWM of secondary progressive MS (SPMS) patients when compared to healthy controls, and this correlated to more severe atrophy in MRI and white matter disintegration (reduced fractional anisotropy, FA) in DTI. The non‐invasive input function methods appeared as feasible options for brain [11C]TMSX images obviating arterial blood sampling. [11C](R)‐PK11195 uptake was increased in the NAWM of SPMS patients when compared to patients with relapsing MS and healthy controls. Higher [11C](R)‐PK11195 binding in NAWM and total perilesional area of T1 hypointense lesions was associated with more severe clinical disability, increased brain atrophy, higher lesion load and reduced FA in NAWM in the MS patients. In autoradiography, increased perilesional [11C](R)‐PK11195 uptake was associated with increased microglial activation identified using immunohistochemistry. In conclusion, brain [11C]TMSX PET imaging holds promise in the evaluation of diffuse neuroinflammation in progressive MS. Being a marker of microglial activation, [11C](R)‐ PK11195 PET imaging could possibly be used as a surrogate biomarker in the evaluation of the neuroinflammatory burden and clinical disease severity in progressive MS.
Resumo:
A 2-year, placebo-controlled, double-blind, crossover study was started in 1992 to evaluate cladribine, an immunosuppressive drug, in the treatment of chronic progressive multiple sclerosis. In the first year patients were given cladribine 0.10 mg/kg per day for 7 days as four monthly courses for a total of 2.8 mg/kg or placebo. During the second year patients treated with placebo during the first year were given i.v. infusions of 0.10 mg, 0.05 mg, and 0.05 mg of cladribine per kg of body weight per day for 7 consecutive days in three successive monthly courses, for a total dose of 1.4 mg/kg. Patients who had been treated previously with cladribine were crossed over to placebo. Analysis of the results revealed a favorable influence on the neurological performance scores, both in the Kurtze extended disability status and the Scripps neurological rating scale, and on MRI findings in patients treated with cladribine. In the first year the most striking finding was that while clinical deterioration continued in the placebo-treated patients, the condition of patients who received cladribine stabilized or even improved slightly. Toxicity and therapeutic response were dose-related.
Resumo:
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) leading to demyelination, axonal damage, and progressive neurologic disability. The development of MS is influenced by environmental factors, particularly the Epstein-Barr virus (EBV), and genetic factors, which include specific HLA types, particularly DRB1*1501-DQA1*0102-DQB1*0602, and a predisposition to autoimmunity in general. MS patients have increased circulating T-cell and antibody reactivity to myelin proteins and gangliosides. It is proposed that the role of EBV is to infect autoreactive B cells that then seed the CNS and promote the survival of autoreactive T cells there. It is also proposed that the clinical attacks of relapsing-remitting MS are orchestrated by myelin-reactive T cells entering the white matter of the CNS from the blood, and that the progressive disability in primary and secondary progressive MS is caused by the action of autoantibodies produced in the CNS by meningeal lymphoid follicles with germinal centers.
Resumo:
Tumor necrosis factor (TNF) alpha, interleukins (IL) 2, 4, 6, and 10, and IgG oligoclonal bands (IgG OB) in vitro production was assessed, after whole-blood stimulation with lipopolysaccharide or concanavalin A, in 61 patients presenting with relapsing-remitting, relapsing-progressive, or chronic progressive multiple sclerosis. Multiple sclerosis patients were receiving no treatment or azathioprine (AZA), cyclosporin, cyclophosphamide, subcutaneous interferon (IFN) beta 1 a, or corticosteroids (CST). Statistical correlations significantly showed that: (a) AZA lowers TNF-alpha (P = 0.002) and increases IL-4 production (P = 0.0024), and IFN-beta 1 a increases TNF-alpha and decreases IL-4 levels; (b) CST has a negative effect on TNF-alpha, IL-6, and IL-4 synthesis; and (c) AZA, IFN-beta 1 a, and CST diminish IgG OB synthesis (P = 0.001). Although our study of the dynamics of TNF-alpha, IL-2, IL-4, IL-6, and IL-10 in vitro production generally found no statistically significant correlations (partly explained by the limited number of values in the various groups), IL-6 was shown to drop during the periods surrounding relapse (P = 0.05) in the absence of treatment, while TNF-alpha (P = 0.04) and IL-6 (P < 0.05) dropped before exacerbation in the presence of AZA. In vitro production of TNF-alpha was closely and positively correlated with that of IL-6, independently of clinical features. The enhanced production of IL-10 detected before or at relapse with AZA and IFN-beta 1 a (trends) may interfere with initiation of the immune reaction and with the development of new CNS lesions. Some discrepancies with previously published results stress the difficulties in studying the state of stimulation of different populations of leukocytes by using a variety of in vitro stimuli and in establishing a correlation between mRNA studies and the amount of final or active protein produced.
Resumo:
Epstein-Barr virus (EBV) has been associated with multiple sclerosis (MS), however, most studies examining the relationship between the virus and the disease have been based on serologies, and if EBV is linked to MS, CD8+ T cells are likely to be involved as they are important both in MS pathogenesis and in controlling viruses. We hypothesized that valuable information on the link between MS and EBV would be ascertained from the study of frequency and activation levels of EBV-specific CD8+ T cells in different categories of MS patients and control subjects. We investigated EBV-specific cellular immune responses using proliferation and enzyme linked immunospot assays, and humoral immune responses by analysis of anti-EBV antibodies, in a cohort of 164 subjects, including 108 patients with different stages of MS, 35 with other neurological diseases and 21 healthy control subjects. Additionally, the cohort were all tested against cytomegalovirus (CMV), another neurotropic herpes virus not convincingly associated with MS, nor thought to be deleterious to the disease. We corrected all data for age using linear regression analysis over the total cohorts of EBV- and CMV-infected subjects. In the whole cohort, the rate of EBV and CMV infections were 99% and 51%, respectively. The frequency of IFN-gamma secreting EBV-specific CD8+ T cells in patients with clinically isolated syndrome (CIS) was significantly higher than that found in patients with relapsing-remitting MS (RR-MS), secondary-progressive MS, primary-progressive MS, patients with other neurological diseases and healthy controls. The shorter the interval between MS onset and our assays, the more intense was the EBV-specific CD8+ T-cell response. Confirming the above results, we found that EBV-specific CD8+ T-cell responses decreased in 12/13 patients with CIS followed prospectively for 1.0 +/- 0.2 years. In contrast, there was no difference between categories for EBV-specific CD4+ T cell, or for CMV-specific CD4+ and CD8+ T-cell responses. Anti-EBV-encoded nuclear antigen-1 (EBNA-1)-specific antibodies correlated with EBV-specific CD8+ T cells in patients with CIS and RR-MS. However, whereas EBV-specific CD8+ T cells were increased the most in early MS, EBNA-1-specific antibodies were increased in early as well as in progressive forms of MS. Our data show high levels of CD8+ T-cell activation against EBV--but not CMV--early in the course of MS, which support the hypothesis that EBV might be associated with the onset of this disease.
Resumo:
When competing strategies for development programs, clinical trial designs, or data analysis methods exist, the alternatives need to be evaluated in a systematic way to facilitate informed decision making. Here we describe a refinement of the recently proposed clinical scenario evaluation framework for the assessment of competing strategies. The refinement is achieved by subdividing key elements previously proposed into new categories, distinguishing between quantities that can be estimated from preexisting data and those that cannot and between aspects under the control of the decision maker from those that are determined by external constraints. The refined framework is illustrated by an application to a design project for an adaptive seamless design for a clinical trial in progressive multiple sclerosis.
Resumo:
OBJECTIVE: To compare the effects of intravenous methylprednisolone (IVMP) in patients with relapsing-remitting (RR-MS), secondary progressive (SP-MS), and primary progressive multiple sclerosis (PP-MS). METHODS: Clinical and neurophysiological follow up was undertaken in 24 RR-MS, eight SP-MS, and nine PP-MS patients receiving Solu-Medrol 500 mg/d over five days for exacerbations involving the motor system. Motor evoked potentials (MEPs) were used to measure central motor conduction time (CMCT) and the triple stimulation technique (TST) was applied to assess conduction deficits. The TST allows accurate quantification of the number of conducting central motor neurones, expressed by the TST amplitude ratio. RESULTS: There was a significant increase in TST amplitude ratio in RR-MS (p<0.001) and SP-MS patients (p<0.02) at day 5, paralleling an increase in muscle force. TST amplitude ratio and muscle force remained stable at two months. In PP-MS, TST amplitude ratio and muscle force did not change. CMCT did not change significantly in any of the three groups. CONCLUSIONS: In RR-MS and SP-MS, IVMP is followed by a prompt increase in conducting central motor neurones paralleled by improvement in muscle force, which most probably reflects partial resolution of central conduction block. The lack of similar clinical and neurophysiological changes in PP-MS corroborates previous clinical reports on limited IVMP efficacy in this patient group and points to pathophysiological differences underlying exacerbations in PP-MS.
Resumo:
BACKGROUND: Gray matter lesions are known to be common in multiple sclerosis (MS) and are suspected to play an important role in disease progression and clinical disability. A combination of magnetic resonance imaging (MRI) techniques, double-inversion recovery (DIR), and phase-sensitive inversion recovery (PSIR), has been used for detection and classification of cortical lesions. This study shows that high-resolution three-dimensional (3D) magnetization-prepared rapid acquisition with gradient echo (MPRAGE) improves the classification of cortical lesions by allowing more accurate anatomic localization of lesion morphology. METHODS: 11 patients with MS with previously identified cortical lesions were scanned using DIR, PSIR, and 3D MPRAGE. Lesions were identified on DIR and PSIR and classified as purely intracortical or mixed. MPRAGE images were then examined, and lesions were re-classified based on the new information. RESULTS: The high signal-to-noise ratio, fine anatomic detail, and clear gray-white matter tissue contrast seen in the MPRAGE images provided superior delineation of lesion borders and surrounding gray-white matter junction, improving classification accuracy. 119 lesions were identified as either intracortical or mixed on DIR/PSIR. In 89 cases, MPRAGE confirmed the classification by DIR/PSIR. In 30 cases, MPRAGE overturned the original classification. CONCLUSION: Improved classification of cortical lesions was realized by inclusion of high-spatial resolution 3D MPRAGE. This sequence provides unique detail on lesion morphology that is necessary for accurate classification.
Resumo:
The purpose of this study was to evaluate longitudinally, using the Iowa Gambling Task (IGT), the dynamics of decision-making capacity at a two-year interval (median: 2.1 years) in a group of patients with multiple sclerosis (MS) (n = 70) and minor neurological disability [Expanded Disability Status Scale (EDSS) < or = 2.5 at baseline]. Cognition (memory, executive functions, attention), behavior, handicap, and perceived health status were also investigated. Standardized change scores [(score at retest-score at baseline)/standard deviation of baseline score] were computed. Results showed that IGT performances decreased from baseline to retest (from 0.3, SD = 0.4 to 0.1, SD = 0.3, p = .005). MS patients who worsened in the IGT were more likely to show a decreased perceived health status and emotional well-being (SEP-59; p = .05 for both). Relapsing rate, disability progression, cognitive, and behavioral changes were not associated with decreased IGT performances. In conclusion, decline in decision making can appear as an isolated deficit in MS.
Resumo:
Multiple Sclerosis (MS) is a central nervous system (CNS) chronic inflammatory demyelinating disease leading to various neurological disabilities. The disorder is more prevalent for women with a ratio of 3:2 female to male. Objectives: To investigate variation within the estrogen receptor 1 (ESR1) polymorphism gene in an Australian MS case-control population using two intragenic restriction fragment length polymorphisms; the G594A located in exon 8 detected with the BtgI restriction enzyme and T938C located in intron 1, detected with PvuII. One hundred and ten Australian MS patients were studied, with patients classified clinically as Relapsing Remitting MS (RR-MS), Secondary Progressive MS (SP-MS) or Primary Progressive MS (PP-MS). Also, 110 age, sex and ethnicity matched controls were investigated as a comparative group. No significant difference in the allelic distribution frequency was found between the case and control groups for the ESR1 PvuII (P = 0.50) and Btg1 (P = 0.45) marker. Our results do not support a role for these two ESR1 markers in multiple sclerosis susceptibility, however other markers within ESR1 should not be excluded for potential involvement in the disorder.
Resumo:
Multiple sclerosis (MS) is a chronic autoimmune demyelinating disease of the central nervous system that causes neurological disorders in young adults. Previous studies in various populations highlighted an association between the HLA-DRB1*1.5 allele and MS. This study investigated the association between HLA-DRB1*15 and other HLA-DRB1 alleles and MS in a Brazilian Caucasian population sample from Londrina, Southern Brazil. HLA-DRB1 alleles were analyzed by polymerase chain reaction with specific sequence oligonucleotide primers in 119 MS patients and in 305 healthy blood donors as a control. Among the MS patients, 89 (75.0%) presented with relapsing remitting MS, 24 (20.0%) with secondary progressive MS and 6 (5.0%) with primary progressive MS. The frequency of the HLA-DRB1*15 allele observed in the MS Brazilian patients was similar to findings reported in previous studies carried out in populations worldwide. However, the results showed a higher frequency of the HLA-DRB1*15 allele in the MS patients compared to the controls, with a relative frequency of 0.1050 (10.50%) and 0.0443 (4.4%), respectively (OR=2.53; 95% CI 1.43-4.46; p=0.0009). A protector allele was also detected. The frequency of the HLA-DRB1*11 allele was reduced in the MS patients compared to the controls, with a relative frequency of 0.1345 (13.4%) and 0.1869 (18.7%), respectively (OR=0.67; 95% CI 0.44-1.03; p=0.0692). The results demonstrated that the HLA-DRB1*15 allele in heterozygosity is positively associated with MS (p=0.0079), and may be considered a genetic marker of susceptibility to the disease. A negative association between the HLA-DRB1*11 allele in homozygosity and MS was also verified (p=0.0418); this allele may be considered a genetic marker of resistance to MS in the Brazilian population.