661 resultados para PRESSING
Resumo:
This paper describes the manufacture of tubular UF and MF porous and supported ceramic membranes to oil/water emulsions demulsification. For such a purpose, a rigorous control was realized over the distribution and size of pores. Suspensions at 30 vol.% of solids (zirconia or alumina powder and sucrose) and 70 vol.% of liquids (isopropyl alcohol and PVB) were prepared in a jar mill varying the milling time of the sucrose particles, according to the pores size expected. The membranes were prepared by isostatic pressing method and structurally characterized by SEM, porosimetry by mercury intrusion and measurements of weight by immersion. The morphological characterization of the membranes identified the formation of porous zirconia and alumina membranes and supported membranes. The results of porosimetry analysis by mercury intrusion presented an average pore size of 1.8 mu m for the microfiltration porous membranes and for the ultrafiltration supported membranes, pores with average size of 0.01-0.03 mu m in the top-layer and 1.8 mu m in the support. By means of the manufacture method applied, it was possible to produce ultra and microfiltration membranes with high potential to be applied to the separation of oil/water emulsions. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
Dissertação de mestrado em Engenharia de Materiais
Resumo:
Lymphatic vasculature is increasingly recognized as an important factor both in the regulation of normal tissue homeostasis and immune response and in many diseases, such as inflammation, cancer, obesity, and hypertension. In the last few years, in addition to the central role of vascular endothelial growth factor (VEGF)-C/VEGF receptor-3 signaling in lymphangiogenesis, significant new insights were obtained about Notch, transforming growth factor β/bone morphogenetic protein, Ras, mitogen-activated protein kinase, phosphatidylinositol 3 kinase, and Ca(2+)/calcineurin signaling pathways in the control of growth and remodeling of lymphatic vessels. An emerging picture of lymphangiogenic signaling is complex and in many ways distinct from the regulation of angiogenesis. This complexity provides new challenges, but also new opportunities for selective therapeutic targeting of lymphatic vasculature.
Resumo:
Why it is easier to cut with even the sharpest knife when 'pressing down and sliding' than when merely 'pressing down alone' is explained. A variety of cases of cutting where the blade and workpiece have different relative motions is analysed and it is shown that the greater the 'slice/push ratio' xi given by ( blade speed parallel to the cutting edge/blade speed perpendicular to the cutting edge), the lower the cutting forces. However, friction limits the reductions attainable at the highest.. The analysis is applied to the geometry of a wheel cutting device (delicatessan slicer) and experiments with a cheddar cheese and a salami using such an instrumented device confirm the general predictions. (C) 2004 Kluwer Academic Publishers.
Resumo:
Dhaka cheese is a semihard artisanal variety made mainly from bovine milk, using very simple pressing methods. Experimental cheeses were pressed at gauge pressures up to 31 kPa for 12 h at 24 °C and 70% RH. These cheeses were subsequently examined for their compositional, textural and rheological properties plus their microstructures investigated by confocal laser microscopy. The cheese pressed at 15.6 kPa was found to have the best compositional and structural properties.
Resumo:
Tiger nut (Cyperus esculentus) tuber contains oil that is high in monounsaturated fatty acids, and this oil makes up about 23% of the tuber. The study aimed at evaluating the impact of several factors and enzymatic pre-treatment on the recovery of pressed tiger nut oil. Smaller particles were more favourable for pressing. High pressure pre-treatment did not increase oil recovery but enzymatic treatment did. The highest yield obtained by enzymatic treatment prior to mechanical extraction was 33 % on a dry defatted basis, which represents a recovery of 90 % of the oil. Tiger nut oil consists mainly of oleic acid; its acid and peroxide values reflect the high stability of the oil.
Resumo:
The tiger nut tuber of the Cyperus esculentus L. plant is an unusual storage system with similar amounts of starch and lipid. The extraction of its oil employing both mechanical pressing and aqueous enzymatic extraction (AEE) methods was investigated and an examination of the resulting products was carried out. The effects of particle size and moisture content of the tuber on the yield of tiger nut oil with pressing were initially studied. Smaller particles were found to enhance oil yields while a range of moisture content was observed to favour higher oil yields. When samples were first subjected to high pressures up to 700 MPa before pressing at 38 MPa there was no increase in the oil yields. Ground samples incubated with a mixture of α- Amylase, Alcalase, and Viscozyme (a mixture of cell wall degrading enzyme) as a pre-treatment, increased oil yield by pressing and 90% of oil was recovered as a result. When aqueous enzymatic extraction was carried out on ground samples, the use of α- Amylase, Alcalase, and Celluclast independently improved extraction oil yields compared to oil extraction without enzymes by 34.5, 23.4 and 14.7% respectively. A mixture of the three enzymes further augmented the oil yield and different operational factors were individually studied for their effects on the process. These include time, total mixed enzyme concentration, linear agitation speed, and solid-liquid ratio. The largest oil yields were obtained with a solid-liquid ratio of 1:6, mixed enzyme concentration of 1% (w/w) and 6 h incubation time although the longer time allowed for the formation of an emulsion. Using stationary samples during incubation surprisingly gave the highest oil yields, and this was observed to be as a result of gravity separation occurring during agitation. Furthermore, the use of high pressure processing up to 300 MPa as a pre-treatment enhanced oil yields but additional pressure increments had a detrimental effect. The quality of oils recovered from both mechanical and aqueous enzymatic extraction based on the percentage free fatty acid (% FFA) and peroxide values (PV) all reflected the good stabilities of the oils with the highest % FFA of 1.8 and PV of 1.7. The fatty acid profiles of all oils also remained unchanged. The level of tocopherols in oils were enhanced with both enzyme aided pressing (EAP) and high pressure processing before AEE. Analysis on the residual meals revealed DP 3 and DP 4 oligosaccharides present in EAP samples but these would require further assessment on their identity and quality.
Resumo:
This work discusses on the preparation of Ni-45Ti-5Mo, Ni-40Ti-10Mo and Ni-46Ti-2Mo-2Zr (at-%) alloys by high-energy ball milling and hot pressing, which are potentially attractive for dental and medical applications. The milling process was performed in stainless steel balls (19mm diameter) and vials (225 mL) using a rotary speed of 300rpm and a ball-to-powder weight ratio of 10:1. Hot pressing under vacuum was performed in a BN-coated graphite crucible at 900 degrees C for 1 h using a load of 20 MPa. The milled and hot-pressed materials were characterized by X-ray diffraction, electron scanning microscopy, and electron dispersive spectrometry. Peaks of B2-NiTi and Ni4Ti3 were identified in XRD patterns of Ni-45Ti-5Mo, Ni-40Ti-10Mo and Ni-46Ti-2Mo-2Zr powders milled for 1h. The NiTi compound dissolved small Mo amounts lower than 4 at%, which were measured by EDS analysis. Moreover, it was identified the existence of an unknown Mo-rich phase in microstructures of the hot-pressed Ni-Ti-Mo alloys.
Resumo:
The objective of this work was the obtaining in situ of alpha-SiAlON-SiC composite, using an alternative rare-earth oxide mixture, RE2O3, as sintering additive, by two different sintering processes. As sintering additive, 20 vol.% of AlN-RE2O3 in a molar ratio of 90: 10 was mixed to the alpha-Si3N4 powder. In the Si3N4-AlN-RE2O3 powder mixture, 0, 10, 15 and 20wt.% of SiC were added. The powder batches were milled, dried and compacted by cold isostatic pressing. Two different sintering processes were used: gas-pressure sintering at 1950 degrees C for 1 h under 1.5 MPa of N-2 atmosphere, or uniaxial hot-pressing at 1750 degrees C, for 30 min under pressure of 20 MPa. The sintered samples were characterized by X-ray diffraction, scanning electron microscopy and mechanical properties. XRD patterns indicate only alpha-SiAlON (alpha') and beta-SiC as crystalline phases. It was observed that the SiC addition did not influence the alpha-SiAlON formation, although the growth of elongated alpha'-grains is substantially decreased. The hot-pressed composites presented better mechanical properties, exhibiting fracture toughness of 5 MPa m(1/2) and hardness around 21.5 GPa. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The effects of the compaction step on the (micro)structural features and aging behavior of polymer coated NdFeB-based bonded magnets is reported. Due to the fracture of the material during pressing, it is estimated an increase of at least 14% in the particles' area which is not coated. Such uncoated surfaces, when exposed to the environment, reduce the magnetic performance of the magnets aged/cured in air by 19% in the conditions evaluated in this investigation. Furthermore, XRD results interpreted by Rietveld analyses show a lattice parameter change in the tetragonal structure of the hard magnetic phase after pressing. Such change varies as a function of the height of the compacted part and it is ascribed to macro-elastic stress arising from the pressure distribution in the magnet. An aging/curing step during 24 h is able to relief such macro-elastic stress. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
It has been demonstrated that mechanical alloying and subsequent consolidation by hot isostatic pressing (HIP) is a successful route to produce dispersion strengthened W alloys with properties satisfying the design requirements of particular plasma facing components in the fusion reactor. However, the presence of the alloying element as a phase filling large interstices between W particles appears to reduce the mechanical properties of these alloys. In order to limit this phase separation induced by the HIP treatment and the detrimental effects on the mechanical properties, the enhancement of the mechanical alloying process, and the effect of a postconsolidation heat treatment in an reducing atmosphere, have been investigated.
Resumo:
W–2Ti and W–1TiC alloys were produced by mechanical alloying and consolidation by hot isostatic pressing. The composition and microstructural characteristics of these alloys were studied by X-ray diffraction, energy dispersion spectroscopy and scanning electron microscopy. The mechanical behavior of the consolidated alloys was characterized by microhardness measurements and three point bending tests. The mechanical characteristics of the W–2Ti alloy appear to be related to solution hardening. In W–1TiC, the residual porosity should be responsible for the poor behavior observed in comparison with W–2Ti.
Resumo:
Includes index.
Resumo:
"Contract AT-30-1 GEN-366."