935 resultados para PLASMODIUM-FALCIPARUM MALARIA
Resumo:
The efficacy of chloroquine treatment of uncomplicated Plasmodium falciparum malaria in East Timor was investigated via molecular tools. Genotyping of the polymorphic markers msp1 and msp2 was performed to investigate the number and type of parasite alleles in pre- and posttreatment blood samples collected from 48 patients. Patients were infected with a minimum of 8 msp1 and 14 msp2 allelic types of parasite, and 43% of the patients had more than one allelic type before treatment. The genotyping also revealed that 66.7% of the patients were infected with at least one identical allelic type of parasite before and after treatment and therefore were likely to have experienced recrudescence. All parasites in pre- and posttreatment blood samples carried the K76T mutation in pfcrt, regardless of the clinical response to chloroquine. The sequence polymorphism patterns in pfcrt in the majority of parasites examined were identical to those observed in Bougainville, Papua New Guinea.
Resumo:
A recent malaria epidemic in the Menoreh Hills of Central Java has increased concern about the re-emergence of endemic malaria on Java, which threatens the island's 120 million residents. A 28-day, in-vivo test of the efficacy of treatment of malaria with antimalarial drugs was conducted among 16 7 villagers in the Menoreh Hills. The treatments investigated, chloroquine (CQ) and sulfadoxine pyrimethamine (SP), constitute, respectively, the first- and second-line treatments for uncomplicated malaria in Indonesia. The prevalence of malaria among 1389 residents screened prior to enrollment was 33%. Treatment outcomes were assessed by microscopical diagnoses, PCR-based confirmation of the diagnoses, measurement of the whole-blood concentrations of CQ and desethylchloroquine (DCQ), and identification of the Plasmodium falciparum genotypes. The 28-day cumulative incidences of therapeutic failure for CQ and SP were, respectively, 47% (N = 36) and 22% (N = 50) in the treatment of P. falciparum, and 18% (N = 77) and 67% (N = 6) in the treatment of P. vivax. Chloroquine was thus an ineffective therapy for P. falciparum malaria, and the presence of CQ-resistant P. vivax and SP-resistant P. falciparum will further compromise efforts to control resurgent malaria on Java.
Resumo:
This clinical trial compared parasitological efficacy, levels of in vivo resistance and side effects of oral chloroquine 25 mg/Kg and 50 mg/Kg in 3 days treatment in Plasmodium falciparum malaria with an extended followed-up of 30 days. The study enroled 58 patients in the 25 mg/Kg group and 66 in the 50 mg/Kg group. All eligible subjects were over 14 years of age and came from Amazon Basin and Central Brazil during the period of August 1989 to April 1991. The cure rate in the 50 mg/Kg group was 89.4% on day 7 and 71.2% on day 14 compared to 44.8% and 24.1% in the 25 mg/Kg group. 74.1% of the patients in the 25 mg/Kg group and 48.4% of the patients in the 50 mg/Kg group had detectable parasitaemia at the day 30. However, there was a decrease of the geometric mean parasite density in both groups specially in the 50 mg/Kg group. There was 24.1% of RIII and 13.8% of RH in the 25 mg/Kg group. Side effects were found to be minimum in both groups. The present data support that there was a high level resistance to chloroquine in both groups, and the high dose regimen only delayed the development of resistance and its administration should not be recommended as first choice in malaria P. falciparum therapy in Brazil.
Resumo:
The present study was carried out to evaluate the Malar-CheckTM Pf test, an immunochromatographic assay that detects Plasmodium falciparum Histidine Rich Protein II, does not require equipment, and is easy and rapid to perform. In dilution assays performed to test sensitivity against known parasite density, Malar-CheckTMwere compared with thick blood smear (TBS), the gold standard for diagnosis. Palo Alto isolate or P. falciparum blood from patients with different parasitemias was used. The average cut-off points for each technique in three independent experiments were 12 and 71 parasites/mm³ (TBS and Malar-CheckTM, respectively). In the field assays, samples were collected from patients with fever who visited endemic regions. Compared to TBS, Malar-CheckTMyielded true-positive results in 38 patients, false-positive results in 3, true-negative results in 23, and false-negative result in 1. Malar-CheckTMperformed with samples from falciparum-infected patients after treatment showed persistence of antigen up to 30 days. Malar-CheckTM should aid the diagnosis of P. falciparum in remote areas and improve routine diagnosis even when microscopy is available. Previous P. falciparum infection, which can determine a false-positive test in cured individuals, should be considered. The prompt results obtained with the Malar-CheckTM for early diagnosis could avoid disease evolution to severe cases.
Resumo:
In vivo antimalarial drug efficacy studies of uncomplicated Plasmodium falciparum malaria at an isolated site in the Amazon basin of Peru bordering Brazil and Colombia showed >50% RII/RIII resistance to sulfadoxine-pyrimethamine but no evidence of resistance to mefloquine.
Resumo:
INTRODUCTION: In Colombia, there are no published studies for the treatment of uncomplicated Plasmodium falciparum malaria comparing artemisinin combination therapies. Hence, it is intended to demonstrate the non-inferior efficacy/safety profiles of artesunate + amodiaquine versus artemether-lumefantrine treatments. METHODS: A randomized, controlled, open-label, noninferiority (Δ≤5%) clinical trial was performed in adults with uncomplicated P. falciparum malaria using the 28‑day World Health Organization validated design/definitions. Patients were randomized 1:1 to either oral artesunate + amodiaquine or artemether-lumefantrine. The primary efficacy endpoint: adequate clinical and parasitological response; secondary endpoints: - treatment failures defined per the World Health Organization. Safety: assessed through adverse events. RESULTS: A total of 105 patients was included in each group: zero censored observations. Mean (95%CI - Confidence interval) adequate clinical and parasitological response rates: 100% for artesunate + amodiaquine and 99% for artemether-lumefantrine; the noninferiority criteria was met (Δ=1.7%). There was one late parasitological therapeutic failure (1%; artemether-lumefantrine group), typified by polymerase chain reaction as the MAD20 MSP1 allele. The fever clearance time (artesunate + amodiaquine group) was significantly shorter (p=0.002). Respectively, abdominal pain for artesunate + amodiaquine and artemether-lumefantrine was 1.9% and 3.8% at baseline (p=0.68) and 1% and 13.3% after treatment (p<0.001). CONCLUSIONS: Uncomplicated P. falciparum malaria treatment with artesunate + amodiaquine is noninferior to the artemether-lumefantrine standard treatment. The efficacy/safety profiles grant further studies in this and similar populations.
Resumo:
The protective efficacy of several recombinat and a synthetic Plasmodium falciparum protein was assessed in Aoutus monkeys. The rp41 aldolase, the 190L fragment of the MSA-1 protein and fusion 190L-CS. T3 protein containg the CS. T3 helper "universal epitope were emulsified in Freund's adjuvants and injected 3 times in groups of 4-5 monkeys each one. The synthetic polymer Spf (66)30 also emulsified in Freund's adjuvants was injected 6 times. Control groups for both experiments were immunized with saline solution in the same adjuvant following the same schedules. Serology for malaria specific antibodies showed seroconversion in monkeys immunized with the recombinant proteins but not in those immunized with the polymer nor in the controls. Challenge was performed with the 10 (elevado a quinta potência) parasites from the P. falciparum FVO isolate. Neither rp41 nor SPf (66)30 induced protection, whereas 190L induced significant delay of parasitemia. The fusion of the CS. T3 epitope to 190L significantly increased is protective capacity.
Resumo:
The most unique characteristic of a parasite when it is in its normal host is the ability to make itself tolerated, which clearly indicates that it has sophisticated means to ensure the neutrality of its host. This is true also in the case of Plasmodium falciparum, since after numerous malaria attacks an equilibrium is reached with a chronic stage of infection, characterized by a relatively low parasitemia, and low or no disease (Sergent & Parrot 1935). We shall briefly review the main characteristics of this state of "premunition", and present data suggesting that the underlying mechanisms of defense rely on the cooperation between cell and antibodies, leading to an antibody dependent cellular inhibition of the intra-erythrocytic growth of the parasite.
Resumo:
Artemether-lumefantrine (AL) is the first-line treatment for uncomplicated malaria in the second and third trimesters of pregnancy. Its efficacy during pregnancy has recently been challenged due to altered pharmacokinetic (PK) properties in this vulnerable group. The aim of this study was to determine the PK profile of AL in pregnant and nonpregnant women and assess their therapeutic outcome. Thirty-three pregnant women and 22 nonpregnant women with malaria were treated with AL (80/480 mg) twice daily for 3 days. All patients provided five venous plasma samples for drug quantification at random times over 7 days. Inter- and intraindividual variability was assessed, and the effects of covariates were quantified using a nonlinear mixed-effects modeling approach (NONMEM). A one-compartment model with first-order absorption and elimination with linear metabolism from drug to metabolite fitted the data best for both arthemether (AM) and lumefantrine (LF) and their metabolites. Pregnancy status and diarrhea showed a significant influence on LF PK. The relative bioavailability of lumefantrine and its metabolism rate into desmethyl-lumefantrine were, respectively, 34% lower and 78% higher in pregnant women than in nonpregnant patients. The overall PCR-uncorrected treatment failure rates were 18% in pregnant women and 5% in nonpregnant women (odds ratio [OR] = 4.04; P value of 0.22). A high median day 7 lumefantrine concentration was significantly associated with adequate clinical and parasitological response (P = 0.03). The observed reduction in the relative bioavailability of lumefantrine in pregnant women may explain the higher treatment failure in this group, mostly due to lower posttreatment prophylaxis. Hence, a modified treatment regimen of malaria in pregnancy should be considered.
Resumo:
An assay was developed measuring the disruption of rosettes between Plasmodium falciparuminfected (trophozoites) and uninfected erythrocytes by the antimalarial drugs quinine, artemisinin mefloquine, primaquine, pyrimethamine, chloroquine and proguanil. At 4 hr incubation rosettes were disrupted by all the drugs in a dose dependent manner. Artemisinin and quinine were the most effective anti-malarials at disrupting rosettes at their therapeutic concentrations with South African RSA 14, 15, 17 and The Gambian FCR-3 P. falciparum strains. The least effective drugs were proguanil and chloroquine. A combination of artemisinin and mefloquine was more effective than each drug alone. The combinations of pyrimethamine or primaquine, with quinine disrupted more rosettes than quinine alone. Quinine may be an effective drug in the treatment of severe malaria because the drug efficiently reduces the number of rosettes.
Resumo:
The effect of antimalarials on gametocytes can influence transmission and the spread of drug resistance. In order to further understand this relationship, we determined the proportion of gametocyte carriers over time post-treatment in patients with uncomplicated Plasmodium falciparum malaria who were treated with either chloroquine (CQ) or sulfadoxine/pyrimethamine (SP). The overall proportion of gametocyte carriers was high (85%) and not statistically significantly different between the CQ and SP treatment groups. However, an increased risk of carrying gametocytes on day 14 of follow up (1.26 95% CI 1.10-1.45) was found among patients having therapeutic failure to CQ compared with patients having an adequate therapeutic response. This finding confirms and extends reports of increased risk of gametocytaemia among CQ resistant P. falciparum.
Resumo:
Antimalarial drugs including the antifolate, pyrimethamine-sulfadoxine (PS), can modulate the prevalence and intensities of gametocytaemia following treatment of acute malaria infections. They may also directly influence the transmission and spread of drug insensitivity. Little is known of the effects of co-trimoxazole (Co-T), another antifolate antimalarial, on gametocytes in children with acute malaria infections. We compared the effects of Co-T and PS on the prevalence and intensities of gametocytaemia and gametocyte sex ratios in 102 children aged 0.5-12 years presenting with acute and uncomplicated falciparum malaria. Compared to pre-treatment, both drugs significantly increased gametocyte carriage post-initiation of treatment. However, gametocyte carriage was significantly lower on day 14 in those treated with Co-T than PS. Significant increase in gametocytaemia with time occurred in PS - but not Co-T-treated children. Kaplan-Meier survival curve of the cumulative probability of remaining gametocyte-free in children who were agametocytaemic at enrolment showed that by day 7 of follow up, children treated with PS had a significantly higher propensity to have developed gametocytes than in Co-T-treated children (Log-rank statistic 5.35, df = 1, P = 0.02). Gametocyte sex ratio changes were similar following treatment with both drugs. PS and Co-T treatment of acute malaria infections in children from this endemic area is associated with significant increases in prevalence and intensities of gametocytaemia but these effects are more marked in those treated with PS than Co-T.
Resumo:
Chloroquine (CQ) resistance in Plasmodium falciparum contributes to increasing malaria-attributable morbidity and mortality in Sub-Saharan Africa. Despite a change in drug policy, continued prescription of CQ did not abate. Therefore the therapeutic efficacy of CQ in uncomplicated falciparum malaria patients was assessed in a standard 28-day protocol in 116 children aged between six and 120 months in Osogbo, Southwest Nigeria. Parasitological and clinical assessments of response to treatment showed that 72 (62.1%) of the patients were cured and 44 (37.9%) failed the CQ treatment. High initial parasite density and young age were independent predictors for early treatment failure. Out of the 44 patients that failed CQ, 24 received amodiaquine + sulphadoxine/pyrimethamine (AQ+SP) and 20 received chlorpheniramine + chloroquine (CH+CQ) combinations. Mean fever clearance time in those treated with AQ+SP was not significantly different from those treated with CH+CQ (p = 0.05). There was no significant difference in the mean parasite density of the two groups. The cure rate for AQ+SP group was 92% while those of CH+CQ was 85%. There was a significant difference in parasite clearance time (p = 0.01) between the two groups. The 38% treatment failure for CQ reported in this study is higher than the 10% recommended by World Health Organization in other to effect change in antimalarial treatment policy. Hence we conclude that CQ can no more be solely relied upon for the treatment of falciparum malaria in Osogbo, Nigeria. AQ+SP and CH+CQ are effective in the treatment of acute uncomplicated malaria and may be considered as useful alternative drugs in the absence of artemisinin-based combination therapies.
Resumo:
Human immunodeficiency virus (HIV)-1 infection has an important impact on malaria. Plasmodium falciparum and HIV-1 co-infected patients (Pf/HIV) present with a high degree of anaemia, enhanced parasitaemia and decreased CD4+ T cell counts, which increase the risk of developing severe malaria. In addition, infection with either Pf or HIV-1 alone causes extensive immune activation. Our hypothesis was that lymphocyte activation is potentiated in Pf/HIV co-infected patients, consequently worsening their immunosuppressed state. To test this hypothesis, 22 Pf/HIV patients, 34 malaria patients, 29 HIV/AIDS patients and 10 healthy controls without malaria or HIV/acquired immune deficiency syndrome (AIDS) from Maputo/Mozambique were recruited for this study. As expected, anaemia was most prevalent in the Pf/HIV group. A significant variation in parasite density was observed in the Pf/HIV co-infected group (110-75,000 parasites/µL), although the median values were similar to those of the malaria only patients. The CD4+ T cell counts were significantly lower in the Pf/HIV group than in the HIV/AIDS only or malaria only patients. Lymphocyte activation was evaluated by the percentage of activation-associated molecules [CD38 expression on CD8+ and human leukocyte antigen-DR expression on CD3+ T cells]. The highest CD38 expression was detected in the Pf/HIV co-infected patients (median = 78.2%). The malaria only (median = 50%) and HIV/AIDS only (median = 52%) patients also exhibited elevated levels of these molecules, although the values were lower than those of the Pf/HIV co-infected cases. Our findings suggest that enhanced T-cell activation in co-infected patients can worsen the immune response to both diseases.