49 resultados para PHOSPHATIDYLGLYCEROL
Resumo:
Previous results indicated that translation of four mitochondrion-encoded genes and one nucleus-encoded gene (COX4) is repressed in mutants (pgs1Delta) of Saccharomyces cerevisiae lacking phosphatidylglycerol and cardiolipin. COX4 translation was studied here using a mitochondrially targeted green fluorescence protein (mtGFP) fused to the COX4 promoter and its 5' and 3' untranslated regions (UTRs). Lack of mtGFP expression independent of carbon source and strain background was established to be at the translational level. The translational defect was not due to deficiency of mitochondrial respiratory function but was rather caused directly by the lack of phosphatidylglycerol and cardiolipin in mitochondrial membranes. Reintroduction of a functional PGS1 gene under control of the ADH1 promoter restored phosphatidylglycerol synthesis and expression of mtGFP. Deletion analysis of the 5' UTR(COX4) revealed the presence of a 50-nucleotide fragment with two stem-loops as a cis-element inhibiting COX4 translation. Binding of a protein factor(s) specifically to this sequence was observed with cytoplasm from pgs1Delta but not PGS1 cells. Using HIS3 and lacZ as reporters, extragenic spontaneous recessive mutations that allowed expression of His3p and beta-galactosidase were isolated, which appeared to be loss-of-function mutations, suggesting that the genes mutated may encode the trans factors that bind to the cis element in pgs1Delta cells.
Resumo:
The in vitro conversion of phosphatidylglycerophosphate (PGP) to phosphatidylglycerol (PG) involves at least two membrane bound phosphatases in Escherichia coli. The genes encoding these two PGP-phosphatases, pgpA and pgpB, are unique and map distally to min 10 and min 28 respectively. Although point mutations in either or both of these genes decrease the level of PGP phosphatase as assayed in vitro, and also result in a minor accumulation of the precursor, PGP, in the membrane, the mutations have no significant effect on the level of PG in the cell (Icho, T. and Raetz, C. R. H. (1983) J. Bact. 153, 722-730). This dilemma suggests that there remains a significant level of phosphatase activity in the pgpAand pgpB mutants which is sufficient to support normal PG metabolism in vivo, but it is not clear whether this activity is a consequence of a separate phosphatase, or due to "leakiness" of the point lesions in these genes. To address this problem, we have constructed null alleles of the two phosphatase genes, and characterized the effects of these mutations on PG metabolism. Our findings demonstrate that neither the pgpA nor the pgpB phosphatase gene is essential for cell viability. In addition, similar to the pgpA$\sp{-}$, pgpB$\sp{-}$ double point mutant, a strain containing both of the corresponding null alleles still retains enough phosphatase activity to maintain normal levels of PG in the membrane. These data demonstrate that there exists at least a third gene encoding a major biosynthetic phosphatase which is responsible for the in vivo conversion of PGP to PG, and calls into question the actual roles of the pgpA and the pgpB gene products in PG metabolism and cell function. ^
Resumo:
To investigate the role of phosphatidylglycerol (PG) in photosynthesis, we constructed a mutant defective in the CDP-diacylglycerol synthase gene from a cyanobacterium, Synechocystis sp. PCC6803. The mutant, designated as SNC1, required PG supplementation for growth. Growth was repressed in PG-free medium concomitantly with the decrease in cellular content of PG. These results indicate that PG is essential, and that SNC1 is defective in PG synthesis. Decrease in PG content was accompanied by a reduction in the cellular content of chlorophyll, but with little effect on the contents of phycobilisome pigments, which showed that levels of chlorophyll–protein complexes decreased without alteration of those of phycobilisomes. Regardless of the decrease in the PG content, CO2-dependent photosynthesis by SNC1 was similar to that by the wild type on a chlorophyll basis, but consequently became lower on a cell basis. Simultaneously, the ratio of oxygen evolution of photosystem II (PSII) measured with p-benzoquinone to that of CO2-dependent photosynthesis, which ranged between 1.3 and 1.7 in the wild type. However, it was decreased in SNC1 from 1.3 to 0.4 during the early growth phase where chlorophyll content and CO2-dependent photosynthesis were little affected, and then finally to 0.1, suggesting that PSII first lost its ability to reduce p-benzoquinone and then decreased in its level and actual activity. These results indicate that PG contributes to the accumulation of chlorophyll–protein complexes in thylakoid membranes, and also to normal functioning of PSII.
Resumo:
In spite of its widespread use, benznidazole's (BNZ) toxicity and low efficacy remains as major drawbacks that impair successful treatments against Chagas disease. Previously, attempting to increase the selectivity and reduce its toxicity on infected tissues, multilamellar liposomes (MLV) composed of hydrogenated soybean phosphatidylcholine (HSPC): distearoyl-phosphatidylglycerol (DSPG): cholesterol (CHOL) 2:1:2 mol:mol loaded with BNZ (MLV-BNZ) were designed. In this work we compared different properties of MLV-BNZ with those of BNZ. Opposite to other hydrophobic drugs, the results indicated that slight changes of BNZ×s association degree to proteins and lipoproteins should not modify the percentage of unbound drug available to exert pharmacological action. On the other hand, when loaded in MLV, BNZ reduced its association to plasma proteins in 45% and became refractory to the sinking effect of blood, dropping 4.5 folds. Additionally, when loaded in MLV, BNZ had higher volume distribution (160 ± 20 vs 102 ± 15 ml/kg) and total clearance (35.23 ± 2.3 vs 21.9 ± 1.4 ml/h.kg), and lower concentration-time curve (7.23 ± 0.2 vs 9.16 ± 0.5 µg.h/ml) than BNZ. Hence, these studies showed that for MLV-BNZ, the amount of BNZ can be substantially increased, from 25 to 70%, being this formulation more rapidly cleared from circulation than free drug; also due to the lower interaction with blood components, lower side effects can be expected.
Resumo:
Electrostatic forces between membranes containing charged lipids were assumed to play an important role in influencing interactions between membranes long before quantitative measurements of such forces were available. ~ur measurements were designed to measure electrostatic forces between layers of lecithin charged with lipi~s carrying ionizable head groups. These experiments have shown that the interactions between charged lipid bila.yere are dominated by electrostatic forces only at separations greater than 30 A. At smaller separations the repulsion between charged bilayers is dominated by strong hydration forces. The net repulsive force between egg lecithin bilayers containing various amounts of cherged lipids (phosphatidylglycerol (PG) 5,10 ano 50 mole%, phosphatidyli. nosi tol (PI) 10 mole% and sodium oleate (Na-Ol) 3,5 and 10 mole%, where mole% gives the ratio of the number of moles' of .charged lipid to the total number of moles of all lipids present in the sample) was stuoied with the help ('If the osmotic streas technique described by LeNeveu et aI, (1977). Also, the forces between pure PG were j_nvestigated in the same manner. The results have been plotted showing variation of force as a function of bilay- _ er separation dw• All curVes 90 obtained called force curves, were found to be similar in sha.pe, showing two distinct regions, one when dw<.30 A is a region cf very rapid iiivariation of force with separation ( it is the region dominated by hydre,tion force) and second when dw> 40 A is a region of very slow variation of force with separB.tion ( it is the region dominated by the electrostatic force). Between these two regions there exists a transition area in which, in most systems studied, a phase separation of lipids into fractions containing different amounts of charged groups, was observed. A qualitative analysis showed that our results were v/ell described by the simple electrostatic double -le.yer theory. For quantitative agreement between measured and calculated force curves however, the charge density for the calculations had to be taken as half of that given by the number density of charged lipids present in the lecithin bilayers. It is not clear at the moment what causes such low apparent degree of ionization among the charged head groups, and further study is needed in this area.
Resumo:
Five Gram-negative, motile, aerobic to microaerophilic spirilla were isolated from various depths of the hypersaline, heliothermal and meromictic Ekho Lake (East Antarctica). The strains are oxidase- and catalase-positive, metabolize a variety of sugars and carboxylic acids and have an absolute requirement for sodium ions. The predominant fatty acids of the organisms are C-16: (1)omega7c, C-16:0 and C(18:1)omega7c, with C-10:1 3-OH, C-10:0 3-OH, C-12:0 3-OH, C-14:1 3-OH, C-14:0 3-OH and C-19:1 present in smaller amounts. The main polar lipids are diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and phosphatidylmonomethylamine. The DNA base composition of the strains is 54-55 mol% G + C. 16S rRNA gene sequence comparisons show that the isolates are related to the genera Oceanospirillum, Pseudospirillum, Marinospirillum, Halomonas and Chromohalobacter in the gamma-Proteobacteria. Morphological, physiological and genotypic differences from these previously described genera support the description of a novel genus and species, Saccharospirillum impatiens gen. nov., sp. nov. The type strain is EL-105(T) (= DSM 12546(T) = CECT 5721(T)).
Resumo:
A Gram-negative, aerobic to microaerophilic rod was isolated from 10 m depths of the hypersaline, heliothermal and meromictic Ekho Lake (East Antarctica). The strain was oxidase- and catalase-positive, metabolized a variety of carboxylic acids and sugars and produced lipase. Cells had an absolute requirement for artificial sea water, which could not be replaced by NaCl. A large in vivo absorption band at 870 nm indicated production of bacteriochlorophyll a. The predominant fatty acids of this organism were 16:0 and 18:1omega7c, with 3-OH 10:0, 16:1omega7c and 18:0 in lower amounts. The main polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylcholine. Ubiquinone 10 was produced. The DNA G + C content was 67 mol%. 16S rRNA gene sequence comparisons indicated that the isolate represents a member of the Roseobacter clade within the alpha-Proteobacteria. The organism showed no particular relationship to any members of this clade but clustered on the periphery of the genera Jannaschia, Octadecabacter and 'Marinosulfonomonas' and the species Ruegeria gelatinovorans. Distinct morphological, physiological and genotypic differences to these previously described taxa supported the description of a new genus and a novel species, for which the name Roseisalinus antarcticus gen. nov., sp. nov. is proposed. The type strain is EL-88(T) (= DSM 11466(T) = CECT 7023(T)).
Resumo:
The interaction between tryptophan-rich puroindoline proteins and model bacterial membranes at the air-liquid interface has been investigated by FTIR spectroscopy, surface pressure measurements and Brewster angle microscopy. The role of different lipid constituents on the interactions between lipid membrane and protein was studied using wild type (Pin-b) and mutant (Trp44 to Arg44 mutant, Pin-bs) puroindoline proteins. The results show differences in the lipid selectivity of the two proteins in terms of preferential binding to specific lipid head groups in mixed lipid systems. Pin-b wild type was able to penetrate mixed layers of phosphatidylethanolamine (PE) and phosphatidylglycerol (PG) head groups more deeply compared to the mutant Pin-bs. Increasing saturation of the lipid tails increased penetration and adsorption of Pin-b wild type, but again the response of the mutant form differed. The results provide insight as to the role of membrane architecture, lipid composition and fluidity, on antimicrobial activity of proteins. Data show distinct differences in the lipid binding behavior of Pin-b as a result of a single residue mutation, highlighting the importance of hydrophobic and charged amino acids in antimicrobial protein and peptide activity.
Resumo:
Aqueous dispersions of the anionic phospholipid dimyristoyl phosphatidylglycerol (DMPG) at pH above the apparent pK of DMPG and concentrations in the interval 70-300 mM have been investigated by small (SAXS) and wide-angle X-ray scattering, differential scanning calorimetry, and polarized optical microscopy. The order. disorder transition of the hydrocarbon chains occurs along an interval of about 10 degrees C (between T(m)(on) similar to 20 degrees C and T(m)(off) similar to 30 degrees C). Such melting regime was previously characterized at lower concentrations, up to 70 mM DMPG, when sample transparency was correlated with the presence of pores across the bilayer. At higher concentrations considered here, the melting regime persists but is not transparent. Defined SAXS peaks appear and a new lamellar phase L(p) with pores is proposed to exist above 70 mM DMPG, starting at similar to 23 degrees C (similar to 3 degrees C above T(m)(on)) and losing correlation after T(m)(off). A new model for describing the X-ray scattering of bilayers with pores, presented here, is able to explain the broad band attributed to in-plane correlation between pores. The majority of cell membranes have a net negative charge, and the opening of pores across the membrane tuned by ionic strength, temperature, and lipid composition is likely to have biological relevance.
Resumo:
Dispersions of saturated anionic phospholipid dimyristoyl phosphatidylglycerol (DMPG) have been extensively studied regarding their peculiar thermostructural behavior. At low ionic strength, the gel-fluid transition is spread along nearly 17 degrees C, displaying several thermal events in the calorimetric profile that is quite different from the single sharp peak around 23 degrees C found for higher ionic strength DMPG dispersions. To investigate the role of charge in the bilayer transition, we carefully examine the temperature dependence of the electrical conductivity of DMPG dispersions at different concentrations, correlating the data with the corresponding differential scanning calorimetry (DSC) traces. Electrical conductivity together with electrophoretic mobility measurements allowed the calculation of the dependence of the degree of ionization of DMPG vesicles on lipid concentration and temperature. It was shown that there is a decrease in vesicle charge as the lipid concentration increases, which is probably correlated with the increase in the concentration of bulk Na(+). Apart from the known increase in the electrical conductivity along the DMPG temperature transition region, a sharp rise was observed at the bilayer pretransition for all lipid concentrations studied, possibly indicating that the beginning of the chain melting process is associated with an increase in bilayer ionization. It is confirmed here that the gel-fluid transition of DMPG at low ionic strength is accompanied by a huge increase in the dispersion viscosity. However, it is shown that this measured macroviscosity is distinct from the local viscosity felt by either charged ions or DMPG charged aggregates in measurements of electrical conductivity or electrophoretic mobility, Data presented here give support to the idea that DMPG vesicles, at low ionic strength, get more ionized along the temperature transition region and could be perforated and/or deformed vesicle structures.
Resumo:
The highly hydrophobic fluorophore Laurdan (6-dodecanoyl-2-(dimethylaminonaphthalene)) has been widely used as a fluorescent probe to monitor lipid membranes. Actually, it monitors the structure and polarity of the bilayer surface, where its fluorescent moiety is supposed to reside. The present paper discusses the high sensitivity of Laurdan fluorescence through the decomposition of its emission spectrum into two Gaussian bands, which correspond to emissions from two different excited states, one more solvent relaxed than the other. It will be shown that the analysis of the area fraction of each band is more sensitive to bilayer structural changes than the largely used parameter called Generalized Polarization, possibly because the latter does not completely separate the fluorescence emission from the two different excited states of Laurdan. Moreover, it will be shown that this decomposition should be done with the spectrum as a function of energy, and not wavelength. Due to the presence of the two emission bands in Laurdan spectrum, fluorescence anisotropy should be measured around 480 nm, to be able to monitor the fluorescence emission from one excited state only, the solvent relaxed state. Laurdan will be used to monitor the complex structure of the anionic phospholipid DMPG (dimyristoyl phosphatidylglycerol) at different ionic strengths, and the alterations caused on gel and fluid membranes due to the interaction of cationic peptides and cholesterol. Analyzing both the emission spectrum decomposition and anisotropy it was possible to distinguish between effects on the packing and on the hydration of the lipid membrane surface. It could be clearly detected that a more potent analog of the melanotropic hormone alpha-MSH (Ac-Ser(1)-Tyr(2)-Ser(3)-Met(4)-Glu(5)-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH(2)) was more effective in rigidifying the bilayer surface of fluid membranes than the hormone, though the hormone significantly decreases the bilayer surface hydration.
Resumo:
The synthetic lipid 1,2-dimyristoyl-sn-3-phosphoglycerol (DMPG), when dispersed in water/NaCl exhibits a complex phase behavior caused by its almost unlimited swelling in excess water. Using deuterium ((2)H)- and phosphorus ((31)P)-NMR we have studied the molecular properties of DMPG/water/NaCl dispersions as a function of lipid and NaCl concentration. We have measured the order profile of the hydrophobic part of the lipid bilayer with deuterated DMPG while the orientation of the phosphoglycerol headgroup was deduced from the (31)P NMR chemical shielding anisotropy. At temperatures > 30 degrees C we observe well-resolved (2)H- and (31)P NMR spectra not much different from other liquid crystalline bilayers. From the order profiles it is possible to deduce the average length of the flexible fatty acyl chain. Unusual spectra are obtained in the temperature interval of 20-25 degrees C, indicating one or several phase transitions. The most dramatic changes are seen at low lipid concentration and low ionic strength. Under these conditions and at 25 degrees C, the phosphoglycerol headgroup rotates into the hydrocarbon layer and the hydrocarbon chains show larger flexing motions than at higher temperatures. The orientation of the phosphoglycerol headgroup depends on the bilayer surface charge and correlates with the degree of dissociation of DMPG-Na(+). The larger the negative surface charge, the more the headgroup rotates toward the nonpolar region.
Resumo:
We investigate the bilayer pre-transition exhibited by some lipids at temperatures below their main phase transition, and which is generally associated to the formation of periodic ripples in the membrane. Experimentally we focus on the anionic lipid dipalmytoylphosphatidylglycerol (DPPG) at different ionic strengths, and on the neutral lipid dipalmytoylphosphatidylcholine (DPPC). From the analysis of differential scanning calorimetry traces of the two lipids we find that both pre- and main transitions are part of the same melting process. Electron spin resonance of spin labels and excitation generalized polarization of Laurdan reveal the coexistence of gel and fluid domains at temperatures between the pre- and main transitions of both lipids, reinforcing the first finding. Also, the melting process of DPPG at low ionic strength is found to be less cooperative than that of DPPC. From the theoretical side, we introduce a statistical model in which a next-nearest-neighbor competing interaction is added to the usual two-state model. For the first time, modulated phases (ordered and disordered lipids periodically aligned) emerge between the gel and fluid phases as a natural consequence of the competition between lipid-lipid interactions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A major challenge for producing low cost biosensors based on nanostructured films with control of molecular architectures is to preserve the catalytic activity of the immobilized biomolecules. In this study, we show that catalase (HRP) keeps its activity if immobilized in Langmuir-Blodgett (LB) films of dipalmitoyl phosphatidylglycerol (DPPG). The incorporation of catalase into a DPPG monolayer at the at interface was demonstrated with surface pressure and surface potential isotherms, in addition to polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). According to the PM-IRRAS data. catalase was not denatured upon adsorption on a preformed DPPG monolayer and could be transferred onto a solid substrate. The catalytic activity of catalase in a mixed LB film with DPPG was ca. 13% higher than in solution. The control of molecular architecture and choice of a suitable phospholipid matrix allows catalase-containing LB films to be used in sensing hydrogen peroxide.