971 resultados para PCR-PRA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Saúde Coletiva - FMB
Resumo:
Leprosy is an infectious disease caused by Mycobacterium leprae. The polymerase chain reaction (PCR) has been applied to detect M. leprae in different clinical samples and urine seems to be attractive for this purpose. PCR was used to improve the sensitivity for diagnosing leprosy by amplifying a 151-bp PCR fragment of the M. leprae pra gene (PCR-Pra) in urine samples. Seventy-three leprosy patients (39 males and 34 females, 14 to 78 years old) were selected for leprosy diagnosis at a reference laboratory in Maringá, PR, Brazil. Of these, 36 were under anti-leprosy multidrug therapy with dapsone and rifampicin for tuberculoid (TT) and dapsone, rifampicin and clofazimine for borderline (BB) and lepromatous (LL) forms. The control group contained 50 healthy individuals without any clinical history of leprosy. DNA isolated from leprosy patients’ urine samples was successfully amplified by PCR-Pra in 46.6% (34/73) of the cases. The positivity of PCR-Pra for patients with the TT form was 75% for both patients under treatment and non-treated patients (P = 0.1306). In patients with the LL form, PCR-Pra positivity was 52 and 30% for patients under treatment and non-treated patients, respectively (P = 0.2386). PCR-Pra showed a statistically significant difference in detecting M. leprae between the TT and LL forms of leprosy in patients under treatment (P = 0.0033). Although the current study showed that the proposed PCR-Pra has some limitations in the detection of M. leprae, this method has the potential to be a useful tool for leprosy diagnosis mainly in TT leprosy where the AFB slit-skin smear is always negative.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The presence of environmental mycobacteria on surfaces in two public health institutions, namely a health center and a hospital in upstate São Paulo (Brazil), was identified by polymerase chain reaction-restriction enzyme analysis (PRA). The possible sources of contamination by these microorganisms were evaluated, contributing to epidemiology studies. Methods: From June 2005 to June 2006, a total of 632 samples were collected from exposed surfaces, such as washbasins, drinking fountains, and other accessible sites, and the mycobacteria present in the samples were isolated and cultured. Results: Sixty-five mycobacteria were isolated from the 632 samples; 47 of which were detected in samples from the health center and 18 in samples collected from the hospital. The isolates were identified by DNA restriction patterns obtained by PRA, and potentially pathogenic species were found to be prevalent among the identified mycobacteria. This study shows that the PRA technique can be employed as a fast and easy method for identification of nontuberculous mycobacteria in public areas. Conclusions: The isolation of environmental mycobacteria from the two health institutions demonstrates that these surfaces are reservoirs of potentially pathogenic mycobacteria and indicates the need for continuous maintenance and monitoring. These data will add to the study of the epidemiology of these microorganisms.
Resumo:
Water quality is very important for the health and the population welfare, and the public supply system must provide water quality and suffi cient quantity for the entire population. Water treatment stations, are the main way to obtain water quality. When this doesn’t occur, several problems can affect the population, in this case, using water with poor quality is a constant risk of emergence causing various diseases. The elimination of microorganisms in treated water reduces competition, encouraging the multiplication of chlorine resistant bacteria as Mycobacterium genus frequently isolated from treated and chlorinated water. Considering the lack of indication from examinations of mycobacteria routine laboratory for quality control of drinking water and other human uses, the objective was to verify the presence isolate and identify the environmental mycobacteria in the system water source surface of Araraquara - SP. We analyzed 40 water samples, distributed as follows: ten water gross collected at Station Water Treatment Plant (WTP), harvested after ten fi ltration; ten collected in the reservoir after chlorination and ten in the network distribution. Were recovered 43 isolates of mycobacteria. All isolates were subjected to PCR-PRA. The mycobacteria were identifi ed as M. lentifl avum, M. parafortuitum, M. genavense, M. gordonae, M. fortuitum, M. confl uent, M. duvalii, M. avium subspecies paratuberculosis and M. szulgai. With these results, was concluded that water is an important source of environmental mycobacteria probably related to several human diseases, suggesting the carrying out continuous monitoring of the microorganisms in the system drinking water.
Resumo:
Leprosy is an infectious disease caused by Mycobacterium leprae. The polymerase chain reaction (PCR) has been applied to detect M. leprae in different clinical samples and urine seems to be attractive for this purpose. PCR was used to improve the sensitivity for diagnosing leprosy by amplifying a 151-bp PCR fragment of the M. leprae pra gene (PCR-Pra) in urine samples. Seventy-three leprosy patients (39 males and 34 females, 14 to 78 years old) were selected for leprosy diagnosis at a reference laboratory in Maringa, PR, Brazil. Of these, 36 were under anti-leprosy multidrug therapy with dapsone and rifampicin for tuberculoid (TT) and dapsone, rifampicin and clofazimine for borderline (BB) and lepromatous (LL) forms. The control group contained 50 healthy individuals without any clinical history of leprosy. DNA isolated from leprosy patients' urine samples was successfully amplified by PCR-Pra in 46.6% (34/73) of the cases. The positivity of PCR-Pra for patients with the TT form was 75% for both patients under treatment and non-treated patients (P = 0.1306). In patients with the LL form, PCR-Pra positivity was 52 and 30% for patients under treatment and non-treated patients, respectively (P = 0.2386). PCR-Pra showed a statistically significant difference in detecting M. leprae between the TT and LL forms of leprosy in patients under treatment (P = 0.0033). Although the current study showed that the proposed PCR-Pra has some limitations in the detection of M. leprae, this method has the potential to be a useful tool for leprosy diagnosis mainly in TT leprosy where the AFB slit-skin smear is always negative.
Resumo:
More than 70 species of mycobacteria have been defined, and some can cause disease in humans, especially in immunocompromised patients. Species identification in most clinical laboratories is based on phenotypic characteristics and biochemical tests and final results are obtained only after two to four weeks. Quick identification methods, by reducing time for diagnosis, could expedite institution of specific treatment, increasing chances of success. PCR restriction-enzyme analysis (PRA) of the hsp65 gene was used as a rapid method for identification of 103 clinical isolates. Band patterns were interpreted by comparison with published tables and patterns available at an Internet site (http://www.hospvd.ch:8005). Concordant results of PRA and biochemical identification were obtained in 76 out of 83 isolates (91.5%). Results from 20 isolates could not be compared due to inconclusive PRA or biochemical identification. The results of this work showed that PRA could improve identification of mycobacteria in a routine setting because it is accurate, fast, and cheaper than conventional phenotypic identification.
Resumo:
Abstract Background Identification of nontuberculous mycobacteria (NTM) based on phenotypic tests is time-consuming, labor-intensive, expensive and often provides erroneous or inconclusive results. In the molecular method referred to as PRA-hsp65, a fragment of the hsp65 gene is amplified by PCR and then analyzed by restriction digest; this rapid approach offers the promise of accurate, cost-effective species identification. The aim of this study was to determine whether species identification of NTM using PRA-hsp65 is sufficiently reliable to serve as the routine methodology in a reference laboratory. Results A total of 434 NTM isolates were obtained from 5019 cultures submitted to the Institute Adolpho Lutz, Sao Paulo Brazil, between January 2000 and January 2001. Species identification was performed for all isolates using conventional phenotypic methods and PRA-hsp65. For isolates for which these methods gave discordant results, definitive species identification was obtained by sequencing a 441 bp fragment of hsp65. Phenotypic evaluation and PRA-hsp65 were concordant for 321 (74%) isolates. These assignments were presumed to be correct. For the remaining 113 discordant isolates, definitive identification was based on sequencing a 441 bp fragment of hsp65. PRA-hsp65 identified 30 isolates with hsp65 alleles representing 13 previously unreported PRA-hsp65 patterns. Overall, species identification by PRA-hsp65 was significantly more accurate than by phenotype methods (392 (90.3%) vs. 338 (77.9%), respectively; p < .0001, Fisher's test). Among the 333 isolates representing the most common pathogenic species, PRA-hsp65 provided an incorrect result for only 1.2%. Conclusion PRA-hsp65 is a rapid and highly reliable method and deserves consideration by any clinical microbiology laboratory charged with performing species identification of NTM.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The efficacy of the human papillomavirus type 16 (HPV-16)/HPV-18 AS04-adjuvanted vaccine against cervical infections with HPV in the Papilloma Trial against Cancer in Young Adults (PATRICIA) was evaluated using a combination of the broad-spectrum L1-based SPF10 PCR-DNA enzyme immunoassay (DEIA)/line probe assay (LiPA25) system with type-specific PCRs for HPV-16 and -18. Broad-spectrum PCR assays may underestimate the presence of HPV genotypes present at relatively low concentrations in multiple infections, due to competition between genotypes. Therefore, samples were retrospectively reanalyzed using a testing algorithm incorporating the SPF10 PCR-DEIA/LiPA25 plus a novel E6-based multiplex type-specific PCR and reverse hybridization assay (MPTS12 RHA), which permits detection of a panel of nine oncogenic HPV genotypes (types 16, 18, 31, 33, 35, 45, 52, 58, and 59). For the vaccine against HPV types 16 and 18, there was no major impact on estimates of vaccine efficacy (VE) for incident or 6-month or 12-month persistent infections when the MPTS12 RHA was included in the testing algorithm versus estimates with the protocol-specified algorithm. However, the alternative testing algorithm showed greater sensitivity than the protocol-specified algorithm for detection of some nonvaccine oncogenic HPV types. More cases were gained in the control group than in the vaccine group, leading to higher point estimates of VE for 6-month and 12-month persistent infections for the nonvaccine oncogenic types included in the MPTS12 RHA assay (types 31, 33, 35, 45, 52, 58, and 59). This post hoc analysis indicates that the per-protocol testing algorithm used in PATRICIA underestimated the VE against some nonvaccine oncogenic HPV types and that the choice of the HPV DNA testing methodology is important for the evaluation of VE in clinical trials. (This study has been registered at ClinicalTrials.gov under registration no. NCT00122681.).
Resumo:
Infections of the central nervous systems (CNS) present a diagnostic problem for which an accurate laboratory diagnosis is essential. Invasive practices, such as cerebral biopsy, have been replaced by obtaining a polymerase chain reaction (PCR) diagnosis using cerebral spinal fluid (CSF) as a reference method. Tests on DNA extracted from plasma are noninvasive, thus avoiding all of the collateral effects and patient risks associated with CSF collection. This study aimed to determine whether plasma can replace CSF in nested PCR analysis for the detection of CNS human herpesvirus (HHV) diseases by analysing the proportion of patients whose CSF nested PCR results were positive for CNS HHV who also had the same organism identified by plasma nested PCR. In this study, CSF DNA was used as the gold standard, and nested PCR was performed on both types of samples. Fifty-two patients with symptoms of nervous system infection were submitted to CSF and blood collection. For the eight HHV, one positive DNA result-in plasma and/or CSF nested PCR-was considered an active HHV infection, whereas the occurrence of two or more HHVs in the same sample was considered a coinfection. HHV infections were positively detected in 27/52 (51.9%) of the CSF and in 32/52 (61.5%) of the plasma, difference not significant, thus nested PCR can be performed on plasma instead of CSF. In conclusion, this findings suggest that plasma as a useful material for the diagnosis of cases where there is any difficulty to perform a CSF puncture.
Resumo:
The objective of the present study was to improve the detection of B. abortus by PCR in organs of aborted fetuses from infected cows, an important mechanism to find infected herds on the eradication phase of the program. So, different DNA extraction protocols were compared, focusing the PCR detection of B. abortus in clinical samples collected from aborted fetuses or calves born from cows challenged with the 2308 B. abortus strain. Therefore, two gold standard groups were built based on classical bacteriology, formed from: 32 lungs (17 positives), 26 spleens (11 positives), 23 livers (8 positives) and 22 bronchial lymph nodes (7 positives). All samples were submitted to three DNA extraction protocols, followed by the same amplification process with the primers B4 and B5. From the accumulated results for organ, the proportion of positives for the lungs was higher than the livers (p=0.04) or bronchial lymph nodes (p=0.004) and equal to the spleens (p=0.18). From the accumulated results for DNA extraction protocol, the proportion of positives for the Boom protocol was bigger than the PK (p<0.0001) and GT (p=0.0004). There was no difference between the PK and GT protocols (p=0.5). Some positive samples from the classical bacteriology were negative to the PCR and viceversa. Therefore, the best strategy for B. abortus detection in the organs of aborted fetuses or calves born from infected cows is the use, in parallel, of isolation by classical bacteriology and the PCR, with the DNA extraction performed by the Boom protocol.
Resumo:
Melipona quadrifasciata quadrifasciata and M. quadrifasciata anthidioides are subspecies of M. quadrifasciata, a stingless bee species common in coastal Brazil. These subspecies are discriminated by the yellow stripe pattern of the abdominal tergites. We found Vsp I restriction patterns in the cytochrome b region closely associated to each subspecies in 155 M. quadrifasciata colonies of different geographical origin. This mitochondrial DNA molecular marker facilitates diagnosis of M. quadrifasciata subspecies matrilines and can be used to establish their natural distribution and identify hybrid colonies.