1000 resultados para PARP-1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ATM and PARP-1 are two of the most important players in the cell's response to DNA damage. PARP-1 and ATM recognize and bound to both single and double strand DNA breaks in response to different triggers. Here we report that ATM and PARP-1 form a molecular complex in vivo in undamaged cells and this association increases after gamma-irradiation. ATM is also modified by PARP-1 during DNA damage. We have also evaluated the impact of PARP-1 absence or inhibition on ATM-kinase activity and have found that while PARP-1 deficient cells display a defective ATM-kinase activity and reduced gamma-H2AX foci formation in response to gamma-irradiation, PARP inhibition on itself is able to activate ATM-kinase. PARP inhibition induced gamma H2AX foci accumulation, in an ATM-dependent manner. Inhibition of PARP also induces DNA double strand breaks which were dependent on the presence of ATM. As consequence ATM deficient cells display an increased sensitivity to PARP inhibition. In summary our results show that while PARP-1 is needed in the response of ATM to gamma irradiation, the inhibition of PARP induces DNA double strand breaks (which are resolved in and ATM-dependent pathway) and activates ATM kinase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PARP inhibition can induce anti-neoplastic effects when used as monotherapy or in combination with chemo- or radiotherapy in various tumor settings; however, the basis for the anti-metastasic activities resulting from PARP inhibition remains unknown. PARP inhibitors may also act as modulators of tumor angiogenesis. Proteomic analysis of endothelial cells revealed that vimentin, an intermediary filament involved in angiogenesis and a specific hallmark of EndoMT (endothelial to mesenchymal transition) transformation, was down-regulated following loss of PARP-1 function in endothelial cells. VE-cadherin, an endothelial marker of vascular normalization, was up-regulated in HUVEC treated with PARP inhibitors or following PARP-1 silencing; vimentin over-expression was sufficient to drive to an EndoMT phenotype. In melanoma cells, PARP inhibition reduced pro-metastatic markers, including vasculogenic mimicry. We also demonstrated that vimentin expression was sufficient to induce increased mesenchymal/pro-metastasic phenotypic changes in melanoma cells, including ILK/GSK3-β-dependent E-cadherin down-regulation, Snail1 activation and increased cell motility and migration. In a murine model of metastatic melanoma, PARP inhibition counteracted the ability of melanoma cells to metastasize to the lung. These results suggest that inhibition of PARP interferes with key metastasis-promoting processes, leading to suppression of invasion and colonization of distal organs by aggressive metastatic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

UNLABELLED: Pancreatic cancer (PC) is one of the most lethal human malignancies and a major health problem. Patients diagnosed with PC and treated with conventional approaches have an overall 5-year survival rate of less than 5%. Novel strategies are needed to treat this disease. Herein, we propose a combinatorial strategy that targets two unrelated metabolic enzymes overexpressed in PC cells: NAD(P)H: quinone oxidoreductase-1 (NQO1) and nicotinamide phosphoribosyl transferase (NAMPT) using β-lapachone (BL) and APO866, respectively. We show that BL tremendously enhances the antitumor activity of APO866 on various PC cell lines without affecting normal cells, in a PARP-1 dependent manner. The chemopotentiation of APO866 with BL was characterized by the following: (i) nicotinamide adenine dinucleotide (NAD) depletion; (ii) catalase (CAT) degradation; (iii) excessive H2O2 production; (iv) dramatic drop of mitochondrial membrane potential (MMP); and finally (v) autophagic-associated cell death. H2O2 production, loss of MMP and cell death (but not NAD depletion) were abrogated by exogenous supplementation with CAT or pharmacological or genetic inhibition of PARP-1. Our data demonstrates that the combination of a non-lethal dose of BL and low dose of APO866 optimizes significantly cell death on various PC lines over both compounds given separately and open new and promising combination in PC therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

studies using UV as a source of DNA damage. However, even though unrepaired UV-induced DNA damages are related to mutagenesis, cell death and tumorigenesis, they do not explain phenotypes such as neurodegeneration and internal tumors observed in patients with syndromes like Xeroderma Pigmentosum (XP) and Cockayne Syndrome (CS) that are associated with NER deficiency. Recent evidences point to a role of NER in the repair of 8-oxodG, a typical substrate of Base Excision Repair (BER). Since deficiencies in BER result in genomic instability, neurodegenerative diseases and cancer, it was investigated in this research the impact of XPC deficiency on BER functions in human cells. It was analyzed both the expression and the cellular localization of APE1, OGG1 e PARP-1, the mainly BER enzymes, in different NER-deficient human fibroblasts. The endogenous levels of these enzymes are reduced in XPC deficient cells. Surprisingly, XP-C fibroblasts were more resistant to oxidative agents than the other NER deficient fibroblasts, despite presenting the highest of 8-oxodG. Furthermore, subtle changes in the nuclear and mitochondrial localization of APE1 were detected in XP-C fibroblasts. To confirm the impact of XPC deficiency in the regulation of APE1 and OGG1 expression and activity, we constructed a XPC-complemented cell line. Although the XPC complementation was only partial, we found that XPC-complemented cells presented increased levels of OGG1 than XPC-deficient cells. The extracts from XPC-complemented cells also presented an elevated OGG1 enzimatic activity. However, it was not observed changes in APE1 expression and activity in the XPCcomplemented cells. In addition, we found that full-length APE1 (37 kDa) and OGG1- α are in the mitochondria of XPC-deficient fibroblasts and XPC-complemented fibroblasts before and after induction of oxidative stress. On the other hand, the expression of APE1 and PARP-1 are not altered in brain and liver of XPC knockout mice. However, XPC deficiency changed the APE1 localization in hypoccampus and hypothalamus. We also observed a physical interaction between XPC and APE1 proteins in human cells. In conclusion, the data suggest that XPC protein has a role in the regulation of OGG1 expression and activity in human cells and is involved mainly in the regulation of APE1 localization in mice. Aditionally, the response of NER deficient cells under oxidative stress may not be only associated to the NER deficiency per se, but it may include the new functions of NER enzymes in regulation of expression and cell localization of BER proteins

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cervical cancer remains persistently the second most common malignancies among women worldwide, responsible for 500,000 new cases annually. Only in Brazil, the estimate is for 18,430 new cases in 2011. Several types of molecular markers have been studied in carcinogenesis including proteins associated with apoptosis such as BAG-1 and PARP-1. This study aims to demonstrate the expression of BAG-1 and PARP-1 in patients with low-grade squamous intraepithelial lesions (LSILs), high-grade squamous intraepithelial lesions (HSILs) and invasive squamous cell carcinomas (SCCs) of the uterine cervix and to verify a possible association with HPV infection. Fifty samples of LSILs, 50 samples of HSILs and 50 samples of invasive SCCs of the uterine cervix were analyzed by immunohistochemistry for BAG-1 and PARP-1 expression. PCR was performed to detect and type HPV DNA. BAG-1 expression levels were significantly different between LSILs and HSILs (p = 0,014) and between LSILs and SCCs (p = 0,014). In regards to PARP-1 expression, we found significant differences between the expression levels in HSILs and SCCs (p = 0,022). No association was found between BAG-1 expression and the presence of HPV. However, a significant association was found between PARP-1 expression and HPV positivity in the HSILs group (p = 0,021). In conclusion our research suggests that BAG-1 expression could contribute to the differentiation between LSIL and HSIL/SCC whereas PARP-1 could be useful to the differentiation between HSIL HPV-related and SCC. Further studies are needed to clarify the molecular aspects of the relationship between PARP-1 expression and HPV infection, with potential applications for cervical cancer prediction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

studies using UV as a source of DNA damage. However, even though unrepaired UV-induced DNA damages are related to mutagenesis, cell death and tumorigenesis, they do not explain phenotypes such as neurodegeneration and internal tumors observed in patients with syndromes like Xeroderma Pigmentosum (XP) and Cockayne Syndrome (CS) that are associated with NER deficiency. Recent evidences point to a role of NER in the repair of 8-oxodG, a typical substrate of Base Excision Repair (BER). Since deficiencies in BER result in genomic instability, neurodegenerative diseases and cancer, it was investigated in this research the impact of XPC deficiency on BER functions in human cells. It was analyzed both the expression and the cellular localization of APE1, OGG1 e PARP-1, the mainly BER enzymes, in different NER-deficient human fibroblasts. The endogenous levels of these enzymes are reduced in XPC deficient cells. Surprisingly, XP-C fibroblasts were more resistant to oxidative agents than the other NER deficient fibroblasts, despite presenting the highest of 8-oxodG. Furthermore, subtle changes in the nuclear and mitochondrial localization of APE1 were detected in XP-C fibroblasts. To confirm the impact of XPC deficiency in the regulation of APE1 and OGG1 expression and activity, we constructed a XPC-complemented cell line. Although the XPC complementation was only partial, we found that XPC-complemented cells presented increased levels of OGG1 than XPC-deficient cells. The extracts from XPC-complemented cells also presented an elevated OGG1 enzimatic activity. However, it was not observed changes in APE1 expression and activity in the XPCcomplemented cells. In addition, we found that full-length APE1 (37 kDa) and OGG1- α are in the mitochondria of XPC-deficient fibroblasts and XPC-complemented fibroblasts before and after induction of oxidative stress. On the other hand, the expression of APE1 and PARP-1 are not altered in brain and liver of XPC knockout mice. However, XPC deficiency changed the APE1 localization in hypoccampus and hypothalamus. We also observed a physical interaction between XPC and APE1 proteins in human cells. In conclusion, the data suggest that XPC protein has a role in the regulation of OGG1 expression and activity in human cells and is involved mainly in the regulation of APE1 localization in mice. Aditionally, the response of NER deficient cells under oxidative stress may not be only associated to the NER deficiency per se, but it may include the new functions of NER enzymes in regulation of expression and cell localization of BER proteins

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Reduction in sirtuin 1 (Sirt-1) is associated with extracellular matrix (ECM) accumulation in the diabetic kidney. Theobromine may reduce kidney ECM accumulation in diabetic rats. In the current study, we aimed to unravel, under diabetic conditions, the mechanism of kidney ECM accumulation induced by a reduction in Sirt-1 and the effect of theobromine in these events. In vitro, we used immortalized human mesangial cells (iHMCs) exposed to high glucose (HG; 30 mM), with or without small interfering RNA for NOX4 and Sirt-1. In vivo, spontaneously hypertensive rats (SHR) were rendered diabetic by means of streptozotocin and studied after 12 wk. The effects of treatment with theobromine were investigated under both conditions. HG leads to a decrease in Sirt-1 activity and NAD(+) levels in iHMCs. Sirt-1 activity could be reestablished by treatment with NAD(+), silencing NOX4, and poly (ADP-ribose) polymerase-1 (PARP-1) blockade, or with theobromine. HG also leads to a low AMP/ATP ratio, acetylation of SMAD3, and increased collagen IV, which is prevented by theobromine. Sirt-1 or AMPK blockade abolished these effects of theobromine. In diabetic SHR, theobromine prevented increases in albuminuria and kidney collagen IV, reduced AMPK, elevated NADPH oxidase activity and PARP-1, and reduced NAD(+) levels and Sirt-1 activity. These results suggest that in diabetes mellitus, Sirt-1 activity is reduced by PARP-1 activation and NAD(+) depletion due to low AMPK, which increases NOX4 expression, leading to ECM accumulation mediated by transforming growth factor (TGF)-β1 signaling. It is suggested that Sirt-1 activation by theobromine may have therapeutic potential for diabetic nephropathy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We test the hypothesis that PARP inhibition can decrease acute tubular necrosis (ATN) and other renal lesions related to prolonged cold ischemia/reperfusion (IR) in kidneys preserved at 4°C in University of Wisconsin (UW) solution. Material and Methods. We used 30 male Parp1(+/+) wild-type and 15 male Parp1(0/0) knockout C57BL/6 mice. Fifteen of these wild-type mice were pretreated with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ) at a concentration of 15 mg/kg body weight, used as PARP inhibitor. Subgroups of mice were established (A: IR 45 min/6 h; B: IR + 48 h in UW solution; and C: IR + 48 h in UW solution plus DPQ). We processed samples for morphological, immunohistochemical, ultrastructural, and western-blotting studies. Results. Prolonged cold ischemia time in UW solution increased PARP-1 expression and kidney injury. Preconditioning with PARP inhibitor DPQ plus DPQ supplementation in UW solution decreased PARP-1 nuclear expression in renal tubules and renal damage. Parp1(0/0) knockout mice were more resistant to IR-induced renal lesion. In conclusion, PARP inhibition attenuates ATN and other IR-related renal lesions in mouse kidneys under prolonged cold storage in UW solution. If confirmed, these data suggest that pharmacological manipulation of PARP activity may have salutary effects in cold-stored organs at transplantation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We test the hypothesis that PARP inhibition can decrease acute tubular necrosis (ATN) and other renal lesions related to prolonged cold ischemia/reperfusion (IR) in kidneys preserved at 4°C in University of Wisconsin (UW) solution. Material and Methods. We used 30 male Parp1(+/+) wild-type and 15 male Parp1(0/0) knockout C57BL/6 mice. Fifteen of these wild-type mice were pretreated with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ) at a concentration of 15 mg/kg body weight, used as PARP inhibitor. Subgroups of mice were established (A: IR 45 min/6 h; B: IR + 48 h in UW solution; and C: IR + 48 h in UW solution plus DPQ). We processed samples for morphological, immunohistochemical, ultrastructural, and western-blotting studies. Results. Prolonged cold ischemia time in UW solution increased PARP-1 expression and kidney injury. Preconditioning with PARP inhibitor DPQ plus DPQ supplementation in UW solution decreased PARP-1 nuclear expression in renal tubules and renal damage. Parp1(0/0) knockout mice were more resistant to IR-induced renal lesion. In conclusion, PARP inhibition attenuates ATN and other IR-related renal lesions in mouse kidneys under prolonged cold storage in UW solution. If confirmed, these data suggest that pharmacological manipulation of PARP activity may have salutary effects in cold-stored organs at transplantation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Poly (ADP-ribose) polymerase 1 (PARP-1) is a constitutive enzyme, the major isoform of the PARP family, which is involved in the regulation of DNA repair, cell death, metabolism, and inflammatory responses. Pharmacological inhibitors of PARP provide significant therapeutic benefits in various preclinical disease models associated with tissue injury and inflammation. However, our understanding the role of PARP activation in the pathophysiology of liver inflammation and fibrosis is limited. In this study we investigated the role of PARP-1 in liver inflammation and fibrosis using acute and chronic models of carbon tetrachloride (CCl4 )-induced liver injury and fibrosis, a model of bile duct ligation (BDL)-induced hepatic fibrosis in vivo, and isolated liver-derived cells ex vivo. Pharmacological inhibition of PARP with structurally distinct inhibitors or genetic deletion of PARP-1 markedly attenuated CCl4 -induced hepatocyte death, inflammation, and fibrosis. Interestingly, the chronic CCl4 -induced liver injury was also characterized by mitochondrial dysfunction and dysregulation of numerous genes involved in metabolism. Most of these pathological changes were attenuated by PARP inhibitors. PARP inhibition not only prevented CCl4 -induced chronic liver inflammation and fibrosis, but was also able to reverse these pathological processes. PARP inhibitors also attenuated the development of BDL-induced hepatic fibrosis in mice. In liver biopsies of subjects with alcoholic or hepatitis B-induced cirrhosis, increased nitrative stress and PARP activation was noted. CONCLUSION: The reactive oxygen/nitrogen species-PARP pathway plays a pathogenetic role in the development of liver inflammation, metabolism, and fibrosis. PARP inhibitors are currently in clinical trials for oncological indications, and the current results indicate that liver inflammation and liver fibrosis may be additional clinical indications where PARP inhibition may be of translational potential.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Le neuroblastome (NB) est la tumeur solide extracranienne la plus fréquente chez le jeune enfant. En dépit de plusieurs avancements thérapeutiques, seulement 60% survivront à long terme. Cette résistance aux traitements est possiblement due, en partie, à la présence des cellules souches cancéreuses (CSC). PARP-1 joue un rôle important dans la chimiorésistance de certaines tumeurs et son inhibition a montré une potentialisation des agents anticancéreux conventionnels. De plus, Bcl-2 est surexprimé dans le NB et son expression accrue contribuerait à la résistance à la chimiothérapie. Le but de notre travail était de déterminer les effets in vitro d’un PARP inhibiteur, AG-014699 (AG), et d’un inhibiteur de Bcl-2, Obatoclax (Obx), in vitro et in vivo, en monothérapie ou en combinaison avec de la Doxorubicine (Doxo) ou du Cisplatin (Cis), deux agents anticancéreux classiquement utilisés dans le traitement du NB. Afin de déterminer l’expression de PARP-1 dans les tumeurs de NB, nous avons analysé une cohorte de 132 tumeurs. Nous avons utilisé le test MTT afin d’évaluer la sensibilité de 6 lignées cellulaires de NB et des CSC à un traitement avec AG seul ou en combinaison avec de la Doxo ou du Cis. Nous avons déterminé l’étendue de la mort cellulaire par Annexin-V et caractérisé les dommages à l’ADN à l’aide d’un marquage γH2aX. De plus, les modulations des voies de signalisation intracellulaire ont été analysées par Western Blot. La sensibilité des cellules à l’Obx a été analysée par MTT sur 6 lignées cellulaires de NB et sa combinaison avec le Cis a également été déterminée dans 2 lignées cellulaires. Le marquage Annexin-V et des combinaisons avec ZVAD-FMK ont aussi été utilisés pour caractériser les effets d’Obx sur l’apoptose. Des expériences in vivo ont également été faites. Nos résultats démontrent que l’expression de PARP-1 est associée aux tumeurs moins agressives. AG n’a peu ou pas effet sur la croissance tumorale et ne potentialise pas significativement les effets de la Doxo ou de Cis. AG combiné à la Doxo semble sensibiliser les CSC dans une lignée cellulaire. L’Annexin-V et le marquage γH2aX ne révèlent pas d’effets synergiques de cette combinaison et les dommages à l’ADN et la mort cellulaire observés sont attribués à la Doxo. Cependant, on observe une augmentation d’apoptose et de bris d’ADN dans une lignée cellulaire (SK-N-FI) lorsqu’AG est utilisé en monothérapie. On observe une surexpression de pAKT et pERK suite à la combinaison Doxo et AG. Les cellules de NB sont sensibles à l’Obx à des concentrations à l’échelle nanomolaire. De plus, Obx active la mort cellulaire par apoptose. Aussi, Obx a un effet synergique avec le Cis in vitro. In vivo, l’Obx diminue significativement la taille tumorale. Nous concluons que l’Obx présente une avenue thérapeutique prometteuse dans le traitement du NB alors que l’utilisation d’AG ne semble pas être aussi encourageante.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Gegenstand dieser Arbeit war die Untersuchung der Bedeutung der Poly(ADP-Ribose)-Polymerase 1 (PARP 1), der AP Endonuklease 1 (Ape 1) und des Xeroderma pigmentosum A (XPA) Proteins für die DNA-Reparatur in Säugerzellen.Zunächst wurde der Einfluss der PARP 1-Aktivität auf die Reparatur verschiedener DNA-Modifikationen untersucht. Die Ergebnisse zeigen erstmalig, dass eine Hemmung der PARP-Aktivität nicht nur eine deutliche Verlangsamung der Reparatur von Einzelstrangbrüchen, sondern auch von oxidativen Purinmodifikationen und Pyrimidindimeren zur Folge hat. Interessanterweise erfolgte diese Verlangsamung der DNA-Reparatur nicht in Csb-defizienten Zellen. Diese Ergebnisse deuten darauf hin, dass die Aktivierung der PARP 1 und das Csb-Protein zusammen an einem neuartigen Mechanismus beteiligt sind, der die globale Reparatur verschiedener DNA-Modifikationen beschleunigt.Weiterhin wurde die Bedeutung der Nukleotidexcisionsreparatur als back-up Reparatur von 8 Hydroxyguanin untersucht. Dazu wurden normale und XPA-defiziente Fibroblasten des Menschen mit einem hOgg1-anitsense Konstrukt transfiziert und dann in diesen Zellen die Reparaturkinetiken oxidativer Basenmodifikationen bestimmt. Dadurch konnte eine Beteiligung des XPA-Proteins an diesem Reparaturweg ausgeschlossen werden.Außerdem wurden die Auswirkungen einer AP Endonuklease-1-Überexpression in XRCC1-defizienten Zellen auf die Reparatur von Einzelstrangbrüchen untersucht. Die Reparatur der induzierten Einzelstrangbrüche war in XRCC1-defizienten Zellen erwartungsgemäß deutlich langsamer als in XRCC1-profizienten Zellen. Die Überexpression der AP Endonuklease 1 in XRCC1-defizienten Zellen führte zu einer teilweisen Beschleunigung der Einzelstrangbruchreparatur.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Poly(ADP-ribose) polymerase-1 (PARP-1; EC 2.4.2.30) is an abundant nuclear enzyme, activated by DNA strand breaks to attach up to 200 ADP-ribose groups to nuclear proteins. As retroviral infection requires integrase-catalyzed DNA strand breaks, we examined infection of pseudotyped HIV type I in fibroblasts from mice with a targeted deletion of PARP-1. Viral infection is almost totally abolished in PARP-1 knockout fibroblasts. This protection from infection reflects prevention of viral integration into the host genome. These findings suggest a potential for PARP inhibitors in therapy of HIV type I infection.