999 resultados para Optical axes
Resumo:
Suggestions that peripheral imagery may affect the development of refractive error have led to interest in the variation in refraction and aberration across the visual field. It is shown that, if the optical system of the eye is rotationally symmetric about an optical axis which does not coincide with the visual axis, measurements of refraction and aberration made along the horizontal and vertical meridians of the visual field will show asymmetry about the visual axis. The departures from symmetry are modelled for second-order aberrations, refractive components and third-order coma. These theoretical results are compared with practical measurements from the literature. The experimental data support the concept that departures from symmetry about the visual axis in the measurements of crossed-cylinder astigmatism J45 and J180 are largely explicable in terms of a decentred optical axis. Measurements of the mean sphere M suggest, however, that the retinal curvature must differ in the horizontal and vertical meridians.
Resumo:
分析了在垂直LiNbO3晶体光轴方向加电压,光沿近光轴方向传播时,入射光偏振方向对电光调制器的影响。通过计算加电场后双折射光程差的变化和偏光振动方向的转动,画出在正交偏振镜下不同起偏方向的锥光干涉图,得到干涉图随起偏方向变化的规律:由偏光振动方向转动引起的消光区域随起偏方向的转动而转动,在起偏和检偏方向上始终消光,在与起偏方向成±45°角方向始终全透光,并且消光线的交点即感应双光轴头不随起偏方向的转动而变化,始终在折射率变大的感应主轴上。
Resumo:
The electro-optic effect in uniaxial crystals for light propagating near the optic axis with any polarization has been analyzed. The passive and the electrically induced birefringences and the rotation of polarization direction in crystals have been calculated, and the conoscopic interference figures under orthogonal polariscopes for different polarizer directions have been plotted. The extinction areas caused by the rotation of polarization direction in crystals change with the polarizer direction, but the two heads of the induced optical axes do not vary, which are always on the induced principal axis with bigger refractive index. The directions of polariscopes are always extinction, and the +/- 45 degrees directions with polarizer are always complete transmission. The conoscopic interference figures for LiNbO3 crystals have been demonstrated experimentally by rotating polariscopes directions, which accord with the theoretically calculating plots. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
本文提出一种基于结构光照明和傅立叶分解方法的荧光层析成像技术,该技术首先将激发光的强度沿着光轴方向调制成余弦函数,然后用此激发光对样品作传统的二维扫描,在每一个扫描位置余弦函数的频率在一定的范围内扫描,同时一一对应地记录下所发出的荧光强度。只要对所纪录的荧光序列做一个简单的傅立叶变换,即可以得到此位置样品沿着光轴方向的荧光团分布。这样通过一个传统的二维扫描,就可以得到一个三维的阳样品分布。
Resumo:
Mounted on the sides of two widely separated spacecraft, the two Heliospheric Imager (HI) instruments onboard NASA’s STEREO mission view, for the first time, the space between the Sun and Earth. These instruments are wide-angle visible-light imagers that incorporate sufficient baffling to eliminate scattered light to the extent that the passage of solar coronal mass ejections (CMEs) through the heliosphere can be detected. Each HI instrument comprises two cameras, HI-1 and HI-2, which have 20° and 70° fields of view and are off-pointed from the Sun direction by 14.0° and 53.7°, respectively, with their optical axes aligned in the ecliptic plane. This arrangement provides coverage over solar elongation angles from 4.0° to 88.7° at the viewpoints of the two spacecraft, thereby allowing the observation of Earth-directed CMEs along the Sun – Earth line to the vicinity of the Earth and beyond. Given the two separated platforms, this also presents the first opportunity to view the structure and evolution of CMEs in three dimensions. The STEREO spacecraft were launched from Cape Canaveral Air Force Base in late October 2006, and the HI instruments have been performing scientific observations since early 2007. The design, development, manufacture, and calibration of these unique instruments are reviewed in this paper. Mission operations, including the initial commissioning phase and the science operations phase, are described. Data processing and analysis procedures are briefly discussed, and ground-test results and in-orbit observations are used to demonstrate that the performance of the instruments meets the original scientific requirements.
Resumo:
To know how much misalignment is tolerable for a particle accelerator is an important input for the design of these machines. In particle accelerators the beam must be guided and focused using bending magnets and magnetic lenses, respectively. The alignment of the lenses along a transport line aims to ensure that the beam passes through their optical axes and represents a critical point in the assembly of the machine. There are more and more accelerators in the world, many of which are very small machines. Because the existing literature and programs are mostly targeted for large machines. in this work we describe a method suitable for small machines. This method consists in determining statistically the alignment tolerance in a set of lenses. Differently from the methods used in standard simulation codes for particle accelerators, the statistical method we propose makes it possible to evaluate particle losses as a function of the alignment accuracy of the optical elements in a transport line. Results for 100 key electrons, on the 3.5-m long conforming beam stage of the IFUSP Microtron are presented as an example of use. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The Z-scan technique is employed to obtain the nonlinear refractive index (n (2)) of the Ca(4)REO(BO(3))(3) (RECOB, where RE = Gd and La) single crystals using 30 fs laser pulses centered at 780 nm for the two orthogonal orientations determined by the optical axes (X and Z) relative to the direction of propagation of the laser beam (k//Y// crystallographic b-axis). The large values of n (2) indicate that both GdCOB and LaCOB are potential hosts for Yb:RECOB lasers operating in the Kerr-lens mode locking (KLM) regime.
Resumo:
In general, a land-based mobile mapping system is featured by a vehicle with a pair of video cameras mounted on the top and positioning and navigation sensors loaded in the vehicle. Considering the pair of video cameras mounted on the roof of the vehicle as a stereo camera pointing forward with both optical axes parallel to each other and orthogonal to the stereo base, whose length is 0.94 m, this paper aims at analyzing the interior and exterior camera orientation and the object point coordinates estimated by phototriangulation when the length constraint related to the stereo base is considered or not. The results show that the stereo base constraint has effect ouver the convergence estimation, but does it neither improves the object point coordinate estimation at significance level of 5% and nor it influences the interior orientation parameters. Finally, it has been noticed that the optical axes are not truly parallel to each other and orthogonal to the stereo base. Additionally, it has been observed that there is a convergence of approximately 0.5 degrees in the optical axes and they are not in the same plane (approximately 0.8 degrees deviation).
Resumo:
In this paper, the concept of Matching Parallelepiped (MP) is presented. It is shown that the volume of the MP can be used as an additional measure of `distance' between a pair of candidate points in a matching algorithm by Relaxation Labeling (RL). The volume of the MP is related with the Epipolar Geometry and the use of this measure works as an epipolar constraint in a RL process, decreasing the efforts in the matching algorithm since it is not necessary to explicitly determine the equations of the epipolar lines and to compute the distance of a candidate point to each epipolar line. As at the beginning of the process the Relative Orientation (RO) parameters are unknown, a initial matching based on gradient, intensities and correlation is obtained. Based on this set of labeled points the RO is determined and the epipolar constraint included in the algorithm. The obtained results shown that the proposed approach is suitable to determine feature-point matching with simultaneous estimation of camera orientation parameters even for the cases where the pair of optical axes are not parallel.
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We investigate the existence and dispersion characteristics of surface waves that propagate at an interface between a metal–dielectric superlattice and an isotropic dielectric. Within the long-wavelength limit, when the effective-medium (EM) approximation is valid, the superlattice behaves like a uniaxial plasmonic crystal with the main optical axes perpendicular to the metal–dielectric interfaces. We demonstrate that if such a semi-infinite plasmonic crystal is cut normally to the layer interfaces and brought into contact with a semi-infinite dielectric, a new type of surface mode can appear. Such modes can propagate obliquely to the optical axes if favorable conditions regarding the thickness of the layers and the dielectric permittivities of the constituent materials are met. We show that losses within the metallic layers can be substantially reduced by making the layers sufficiently thin. At the same time, a dramatic enlargement of the range of angles for oblique propagation of the new surface modes is observed. This can lead, however, to field non-locality and consequently to failure of the EM approximation.
Resumo:
Purpose: We term the visual field position from which the pupil appears most nearly circular as the pupillary circular axis (PCAx). The aim was to determine and compare the horizontal and vertical co-ordinates of the PCAx and optical axis from pupil shape and refraction information for only the horizontal meridian of the visual field. Method: The PCAx was determined from the changes with visual field angle in the ellipticity and orientation of pupil images out to ±90° from fixation along the horizontal meridian for the right eyes of 30 people. This axis was compared with the optical axis determined from the changes in the astigmatic components of the refractions for field angles out to ±35° in the same meridian. Results: The mean estimated horizontal and vertical field coordinates of the PCAx were (‒5.3±1.9°, ‒3.2±1.5°) compared with (‒4.8±5.1°, ‒1.5±3.4°) for the optical axis. The vertical co-ordinates of the two axes were just significantly different (p =0.03) but there was no significant correlation between them. Only the horizontal coordinate of the PCAx was significantly related to the refraction in the group. Conclusion: On average, the PCAx is displaced from the line-of-sight by about the same angle as the optical axis but there is more inter-subject variation in the position of the optical axis. When modelling the optical performance of the eye, it appears reasonable to assume that the pupil is circular when viewed along the line-of-sight.
Resumo:
Optical quality single crystals of sodium D-isoascorbate monohydrate were grown by a slow cooling technique. The crystal possesses a bulky prismatic morphology. Thermal analyses indicate that the crystals are stable up to 125 degrees C. The optical transmission window ranges from 307 nm to 1450 nm. The principal refractive indices have been measured employing Brewster's angle method. The crystallographic and the principal dielectric axes coincide with each other such that a lies along Z, b along X and c along Y. The optic axis is oriented 58 degrees (at 532 nm) to the crystallographic a axis in the XZ plane and the crystal is negative biaxial. Type 1 and type 2 phase matching curves are generated and experimentally verified. No polarization dependence of the light absorption was observed confirming the validity of Kleinman's symmetry conjecture, leading to a single nonvanishing nonlinear tensor component. According to Hobden's classification the crystal belongs to class 3. The crystal also exhibits second order noncollinear conic sections. The single shot and multiple shot surface laser damage thresholds are determined to be 32.7 GW cm(-2) and 6.5 GW cm(-2) respectively for 1064 nm radiation.