889 resultados para Optical Manipulation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a dual-trap optical tweezers setup which directly measures forces using linear momentum conservation. The setup uses a counter-propagating geometry, which allows momentum measurement on each beam separately. The experimental advantages of this setup include low drift due to all-optical manipulation, and a robust calibration (independent of the features of the trapped object or buffer medium) due to the force measurement method. Although this design does not attain the high-resolution of some co-propagating setups, we show that it can be used to perform different single molecule measurements: fluctuation-based molecular stiffness characterization at different forces and hopping experiments on molecular hairpins. Remarkably, in our setup it is possible to manipulate very short tethers (such as molecular hairpins with short handles) down to the limit where beads are almost in contact. The setup is used to illustrate a novel method for measuring the stiffness of optical traps and tethers on the basis of equilibrium force fluctuations, i.e., without the need of measuring the force vs molecular extension curve. This method is of general interest for dual trap optical tweezers setups and can be extended to setups which do not directly measure forces.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Optical tweezers are an innovative technique for the non-contact, all-optical manipulation of small material samples, which has extraordinarily expanded and evolved since its inception in the mid-80s of the last century. Nowadays, the potential of optical tweezers has been clearly proven and a wide range of applications both from the physical and biological sciences have solidly emerged, turning the early ideas and techniques into a powerful paradigm for experimentation in the micro- and nanoworld. This review aims at highlighting the fundamental concepts that are essential for a thorough understanding of optical trapping, making emphasis on both its manipulation and measurement capabilities, as well as on the vast array of important biological applications appeared in the last years.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a novel approach for the optical manipulation of neutral atoms in annular light structures produced by the phenomenon of conical refraction occurring in biaxial optical crystals. For a beam focused to a plane behind the crystal, the focal plane exhibits two concentric bright rings enclosing a ring of null intensity called the Poggendorff ring. We demonstrate both theoretically and experimentally that the Poggendorff dark ring of conical refraction is confined in three dimensions by regions of higher intensity. We derive the positions of the confining intensity maxima and minima and discuss the application of the Poggendorff ring for trapping ultra-cold atoms using the repulsive dipole force of blue-detuned light. We give analytical expressions for the trapping frequencies and potential depths along both the radial and the axial directions. Finally, we present realistic numerical simulations of the dynamics of a 87Rb Bose-Einstein condensate trapped inside the Poggendorff ring which are in good agreement with corresponding experimental results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Optical manipulation of microscopic objects (including living cells) using Bessel beams from semiconductor lasers has been demonstrated for the first time. In addition, it has been found in the experiments that a Bessel beam of sufficient power from a semiconductor laser makes it possible to manipulate simultaneously several microscopic objects captured into its central lobe and the first ring. © 2014 Pleiades Publishing, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report on recent progress in the generation of non-diffracting (Bessel) beams from semiconductor light sources including both edge-emitting and surface-emitting semiconductor lasers as well as light-emitting diodes (LEDs). Bessel beams at the power level of Watts with central lobe diameters of a few to tens of micrometers were achieved from compact and highly efficient lasers. The practicality of reducing the central lobe size of the Bessel beam generated with high-power broad-stripe semiconductor lasers and LEDs to a level unachievable by means of traditional focusing has been demonstrated. We also discuss an approach to exceed the limit of power density for the focusing of radiation with high beam propagation parameter M2. Finally, we consider the potential of the semiconductor lasers for applications in optical trapping/tweezing and the perspectives to replace their gas and solid-state laser counterparts for a range of implementations in optical manipulation towards lab-on-chip configurations. © 2014 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Laser traps provide contactless manipulation of plasmonic nanoparticles (NPs) boosting the development of numerous applications in science and technology. The known trapping configurations allow immobilizing and moving single NPs or assembling them, but they are not suitable for massive optical transport of NPs along arbitrary trajectories. Here, we address this challenging problem and demonstrate that it can be handled by exploiting phase gradients forces to both confine and propel the NPs. The developed optical manipulation tool allows for programmable transport routing of NPs to around, surround or impact on objects in the host environment. An additional advantage is that the proposed confinement mechanism works for off-resonant but also resonant NPs paving the way for transport with simultaneous heating, which is of interest for targeted drug delivery and nanolithography. These findings are highly relevant to many technological applications including micro/nano-fabrication, micro-robotics and biomedicine.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The techniques of optical trapping and manipulation of neutral particles by lasers provide unique means to control the dynamics of small particles. These new experimental methods have played a revolutionary role in areas of the physical and biological sciences. This paper reviews the early developments in the field leading to the demonstration of cooling and trapping of neutral atoms in atomic physics and to the first use of optical tweezers traps in biology. Some further major achievements of these rapidly developing methods also are considered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report on the trapping, rotation, and in-situ growth of birefringent tetragonal lysozyme crystals in optical tweezers operating at a wavelength of 1070 nm. Variation of the pH and lysozyme concentration of the solution during growth was used to alter the length to width ratio of the crystals, and hence their orientation in the tweezers. Crystals with the optical axis skewed or perpendicular to the trapping-beam axis could be rotated by changing the orientation of linearly polarized light. We observed spontaneous spinning of some asymmetric crystals in the presence of linearly polarized light, due to radiation pressure effects. Addition of protein to the solution in the tweezers permitted real-time observation of crystal growth. (C) 2004 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes experiments using optical tweezers to probe chloroplast arrangement, shape and consistency in cells of living leaf tissue and in suspension. Dual optical tweezers provided two-point contact on a single chloroplast or two-point contact on two adhered chloroplasts for manipulation in suspension. Alternatively, a microstirrer consisting of a birefringent particle trapped in an elliptically polarized laser trap was used to induce motion and tumbling of a selected chloroplast suspended in a solution. We demonstrate that displacement of chloroplasts inside the cell is extremely difficult, presumably due to chloroplast adhesion to the cytoskeleton and connections between organelles. The study also confirms that the chloroplasts are very thin and extremely cup-shaped with a concave inner surface and a convex outer surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel optical disposable probe for screening fluoroquinolones in fish farming waters is presented, having Norfloxacin (NFX) as target compound. The colorimetric reaction takes place in the solid/liquid interface consisting of a plasticized PVC layer carrying the colorimetric reagent and the sample solution. NFX solutions dropped on top of this solid-sensory surface provided a colour change from light yellow to dark orange. Several metals were tested as colorimetric reagents and Fe(III) was selected. The main parameters affecting the obtained colour were assessed and optimised in both liquid and solid phases. The corresponding studies were conducted by visible spectrophotometry and digital image acquisition. The three coordinates of the HSL model system of the collected image (Hue, Saturation and Lightness) were obtained by simple image management (enabled in any computer). The analytical response of the optimised solid-state optical probe against concentration was tested for several mathematical transformations of the colour coordinates. Linear behaviour was observed for logarithm NFX concentration against Hue+Lightness. Under this condition, the sensor exhibited a limit of detection below 50 μM (corresponding to about 16 mg/mL). Visual inspection also enabled semi-quantitative information. The selectivity was ensured against drugs from other chemical groups than fluoroquinolones. Finally, similar procedure was used to prepare an array of sensors for NFX, consisting on different metal species. Cu(II), Mn(II) and aluminon were selected for this purpose. The sensor array was used to detect NFX in aquaculture water, without any prior sample manipulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The potential of digital holography for complex manipulation of micron-sized particles with optical tweezers has been clearly demonstrated. By contrast, its use in quantitative experiments has been rather limited, partly due to fluctuations introduced by the spatial light modulator (SLM) that displays the kinoforms. This is an important issue when high temporal or spatial stability is a concern. We have investigated the performance of both an analog-addressed and a digitally-addressed SLM, measuring the phase fluctuations of the modulated beam and evaluating the resulting positional stability of a holographic trap. We show that, despite imparting a more unstable modulation to the wavefront, our digitally-addressed SLM generates optical traps in the sample plane stable enough for most applications. We further show that traps produced by the analog-addressed SLM exhibit a superior pointing stability, better than 1 nm, which is comparable to that of non-holographic tweezers. These results suggest a means to implement precision force measurement experiments with holographic optical tweezers (HOTs).