30 resultados para OpenCL
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
clRNG et clProbdist sont deux interfaces de programmation (APIs) que nous avons développées pour la génération de nombres aléatoires uniformes et non uniformes sur des dispositifs de calculs parallèles en utilisant l’environnement OpenCL. La première interface permet de créer au niveau d’un ordinateur central (hôte) des objets de type stream considérés comme des générateurs virtuels parallèles qui peuvent être utilisés aussi bien sur l’hôte que sur les dispositifs parallèles (unités de traitement graphique, CPU multinoyaux, etc.) pour la génération de séquences de nombres aléatoires. La seconde interface permet aussi de générer au niveau de ces unités des variables aléatoires selon différentes lois de probabilité continues et discrètes. Dans ce mémoire, nous allons rappeler des notions de base sur les générateurs de nombres aléatoires, décrire les systèmes hétérogènes ainsi que les techniques de génération parallèle de nombres aléatoires. Nous présenterons aussi les différents modèles composant l’architecture de l’environnement OpenCL et détaillerons les structures des APIs développées. Nous distinguons pour clRNG les fonctions qui permettent la création des streams, les fonctions qui génèrent les variables aléatoires uniformes ainsi que celles qui manipulent les états des streams. clProbDist contient les fonctions de génération de variables aléatoires non uniformes selon la technique d’inversion ainsi que les fonctions qui permettent de retourner différentes statistiques des lois de distribution implémentées. Nous évaluerons ces interfaces de programmation avec deux simulations qui implémentent un exemple simplifié d’un modèle d’inventaire et un exemple d’une option financière. Enfin, nous fournirons les résultats d’expérimentation sur les performances des générateurs implémentés.
Resumo:
Brief overview for the motivation and architecture of OpenCL
Resumo:
En el presente trabajo se propone dar solución a uno de los problemas principales surgido en el campo del análisis de imágenes hiperespectrales. En las últimas décadas este campo está siendo muy activo, por lo que es de vital importancia tratar su problema principal: mezcla espectral. Muchos algoritmos han tratado de solucionar este problema, pero que a través de este trabajo se propone una cadena nueva de desmezclado en paralelo, para ser acelerados bajo el paradigma de programación paralela de OpenCl. Este paradigma nos aporta el modelo de programación unificada para acelerar algoritmos en sistemas heterogéneos. Podemos dividir el proceso de desmezclado espectral en tres etapas. La primera tiene la tarea de encontrar el número de píxeles puros, llamaremos endmembers a los píxeles formados por una única firma espectral, utilizaremos el algoritmo conocido como Geometry-based Estimation of number of endmembers, GENE. La segunda etapa se encarga de identificar los píxel endmembers y extraerlos junto con todas sus bandas espectrales, para esta etapa se utilizará el algoritmo conocido por Simplex Growing Algorithm, SGA. En la última etapa se crean los mapas de abundancia para cada uno de los endmembers encontrados, de esta etapa será encargado el algoritmo conocido por, Sum-to-one Constrained Linear Spectral Unmixing, SCLSU. Las plataformas utilizadas en este proyecto han sido tres: CPU, Intel Xeon E5-2695 v3, GPU, NVidia GeForce GTX 980, Acelerador, Intel Xeon Phi 31S1P. La idea de este proyecto se basa en realizar un análisis exhaustivo de los resultados obtenidos en las diferentes plataformas, con el fin de evaluar cuál se ajusta mejor a nuestras necesidades.
Resumo:
El flujo óptico y la estimación de movimiento es área de conocimiento muy importante usado en otros campos del conocimiento como el de la seguridad o el de la bioinformática. En estos sectores, se demandan aplicaciones de flujo óptico que realicen actividades muy importantes con tiempos de ejecución lo más bajos posibles, llegando a tiempo real si es posible. Debido a la gran complejidad de cálculos que siguen a este tipo de algoritmos como se observará en la sección de resultados, la aceleración de estos es una parte vital para dar soporte y conseguir ese tiempo real tan buscado. Por lo que planteamos como objetivo para este TFG la aceleración de este tipo de algoritmos mediante diversos tipos de aceleradores usando OpenCL y de paso demostrar que OpenCL es una buena herramienta que permite códigos paralelizados con un gran Speedup a la par que funcionar en toda una diversa gama de dispositivos tan distintos como un GPU y una FPGA. Para lo anteriormente mencionado trataremos de desarrollar un código para cada algoritmo y optimizarlo de forma no especifica a una plataforma para posteriormente ejecutarlo sobre las diversas plataformas y medir tiempos y error para cada algoritmo. Para el desarrollo de este proyecto partimos de la teoría de dos algoritmos ya existentes: Lucas&Kanade monoescala y el Horn&Schunck. Además, usaremos estímulos para estos algoritmos muy aceptados por la comunidad como pueden ser el RubberWhale o los Grove, los cuales nos ayudarán a establecer la corrección de estos algoritmos y analizar su precisión, dando así un estudio referencia para saber cual escoger.
Resumo:
In this paper, we develop a fast implementation of an hyperspectral coded aperture (HYCA) algorithm on different platforms using OpenCL, an open standard for parallel programing on heterogeneous systems, which includes a wide variety of devices, from dense multicore systems from major manufactures such as Intel or ARM to new accelerators such as graphics processing units (GPUs), field programmable gate arrays (FPGAs), the Intel Xeon Phi and other custom devices. Our proposed implementation of HYCA significantly reduces its computational cost. Our experiments have been conducted using simulated data and reveal considerable acceleration factors. This kind of implementations with the same descriptive language on different architectures are very important in order to really calibrate the possibility of using heterogeneous platforms for efficient hyperspectral imaging processing in real remote sensing missions.
Resumo:
In questa tesi discuteremo come è possibile effettuare la traduzione di un software parallelo scritto in linguaggio CUDA ad uno in linguaggio OpenCL. Tratteremo le tecnologie utilizzate per lo sviluppo di un simulatore cardiaco parallelo e discuteremo in particolar modo come derivare da queste una versione che ne permetta l’esecuzione su schede video e processori arbitrari. Questa versione verrà messa poi a confronto con quelle già esistenti, per analizzarne prestazioni ed eventuali cambiamenti strutturali del codice. Quanto affermato sopra è stato possibile in gran parte grazie ad un wrapper chiamato SimpleCL pensato per rendere la programmazione OpenCL simile a quella in ambiente CUDA. OpenCL permette di operare con le unità di calcolo in maniera molto astratta, ricordando vagamente i concetti di astrazione di memoria e processori della controparte NVIDIA. Ragionevolmente SimpleCL fornisce solamente una interfaccia che ricorda chiamate CUDA, mantenendo il flusso sottostante fedele a quello che si aspetterebbe OpenCL.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática