998 resultados para Nyctibius grandis
Resumo:
The Potoos form an exclusively neotropical family of nocturnal birds distributed throughout Central and South America, except Chile, and reaching their highest diversity in the Amazon region. The seven currently recognized species are certainly among the most poorly known birds of this region. They are characterized by a distinctive mimicry of vegetal trunks, where they remain almost motionless during daytime. For this reason, their nocturnal and cryptic habits make them exceedingly difficult to study. Published accounts on behavior and natural history of the family are scarce and contributions regarding its anatomy are rare. Here we sample six of the seven currently recognized species of Nyctibiidae, including Nyctibius grandis, N. aethereus, N. griseus, N. jamaicensis, N. leucopterus and N. bracteatus, in order to conduct a detailed and illustrated description of the skull and jaw osteology. High interspecific variation in skull osteology was observed in the family. Species of this family possess a highly modified skull, adapted to their life habits, which shelters their well developed eyes and permits a large mouth opening. The bones that form the palate structure exhibit a dorsoventral flattening, particularly in the pterigoid and parasphenoid bones, with the palatine bone being a broadly developed, wing-shaped structure. In the maxilar region, near the jugal arch, there is a tooth-like projection, unique among birds, which may assist in the retention of prey upon capture. The vomer bone is highly variable within the family, showing varying numbers of rostral projections amongst species. The broad occipital region exhibits large spacing between the quadrate bones, which are vertically disposed and possess a reduced processus orbitalis. The mandible, which is flexible and elastic, has an extremely short symphyseal region and sindesmotic joints in both mandibular rami. As a family, potoos possess a highly specialized skull which provides insight into the relationship between the form of the structures and the feeding habits of the species. Furthermore, the large interspecific variation in skull morphology emphasizes the needs for taxonomic revision within the family, which at present is lumped into a single genus.
Resumo:
The use of fertilization in forest stands results in yield gains, yet little attention has been directed to its potential effects on the quality of wood produced. Information is scarce about the effect of fertilization on anatomical structures of older Eucalyptus wood. This work aims to study the effect of fertilization on tissue cell size of wood from an Eucalyptus grandis stand at age 21 years, the management system of which is based on selective thinning and fertilizer application at the start of the thinning season. Factors to consider include: presence or absence of fertilizers, two log positions and five radial (pith to bark) positions. Results led to the conclusion that fertilization significantly influenced only vessel frequency. Vessel element length was influenced by tree height. Fiber length, fiber diameter, fiber wall thickness, vessel element length, vessel diameter and vessel frequency were influenced by the radial position of the sample in relation to the log. A positive correlation was observed between fiber length, fiber diameter, fiber wall thickness, vessel element length, vessel diameter, ray width and radial position, while a negative correlation was observed between ray frequency and radial position.
Resumo:
MDF panels of Eucalyptus grandis wood fibers were made in either experimentally in a laboratory or on an industrial production line. In order to analyze the influence of the production condition, the anatomical, physical and mechanical properties of the panels were determined. The wood refining induced the transversal rupture of the transversal fiber wall. The MDF panels obtained from the industrial production line presented less swelling in thickness and absorption values and improved mechanical properties in the requirements of bending strength, module of elasticity and surface resistance. For laboratory MDF panels, it was possible to verify a statistically significant correlation between bending strength and module of elasticity, medium density and internal bond and swelling in thickness and absorption. This tendency was also true for the MDF panels obtained in real conditions of production, however without statistical significance. By comparing the quality properties of MDF panels produced in the laboratory with those obtained in real conditions of production, it was sought to standardize the established variables for obtaining panels on a small scale, as well to make possible the safe transfer and divulgation of information obtained in the laboratory.
Resumo:
The objective of this study was to show the radial variation of some anatomic characteristics, wood density and natural durability of teak (Tectona grandis L.F.) growing in Costa Rica. Samples of trees 13 years old were obtained from two growing sites (high and low growing) of plantations established in a humid tropical climate (CHT) and dry tropical climate (CST). The variables measured of the fibers as well as for the rays were not affected by the climate or the type of growing site, except for the length of the fibers. The fibers of teak wood from the best growing site were significantly larger. Vessels were found with a greater frequency for the CST but mostly solitary in comparison with the CBT. Average density, maximum density and the variation within the ring presented a light higher magnitude for the CST. The quality of the growing site did not affect these variables. The resistance of fungus attack was similar in the area of heartwood near the pith compared to the heartwood near the sapwood for all the conditions evaluated. Nevertheless, it was observed in some trees a similar resistance of fungus attack for areas of sapwood compared to similar areas of heartwood.
Resumo:
This work evaluated the wood anatomical and physical characteristics of 24 months-old Eucalyptus grandis trees, planted in 3x2m spacing and fertilized with nitrogen (6, 12, 18 month old) and sewage sludge (planting, 8 month old). For each treatment 10 eucalypts trees were cut according to the distribution of basal area. Wood samples were collected in different percentages of the total height to analyze the anatomical (vessels and fibers) and physical (wood density) characteristics. The results showed that the wood apparent density and wood basic density of the eucalypt trees in the nitrogen and sewage sludge were larger in comparison to the control. Radial profiles of wood apparent density, were similar in the three treatments, presenting the exected characteristics of juvenile wood of 24 months-old eucalypt trees. Fiber and vessel dimensions were not affected by fertilization.
Resumo:
In biopulping, efficient wood colonization by a selected white-rot fungus depends on previous wood chip decontamination to avoid the growth of primary molds. Although simple to perform in the laboratory, in large-scale biopulping trials, complete wood decontamination is difficult to achieve. Furthermore, the use of fungal growth promoters such as corn steep liquor enhances the risk of culture contamination. This paper evaluates the ability of the biopulping fungus Ceriporiopsis subvermispora to compete with indigenous fungi in cultures of fresh or poorly decontaminated Eucalyptus grandis wood chips. While cultures containing autoclaved wood chips were completely free of contaminants, primary molds grew rapidly when non-autoclaved wood chips were used, resulting in heavily contaminated cultures, regardless of the C. subvermispora inoculum/wood ratio evaluated (5, 50 and 3000 mg mycelium kg(-1) wood). Studies on benomyl-amended medium suggested that the fungi involved competed by consumption of the easily available nutrient sources, with C. subvermispora less successful than the contaminant fungi. The use of acid-washed wood chips decreased the level of such contaminant fungi, but production of manganese peroxidase and xylanases was also decreased under these conditions. Nevertheless, chemithermomechanical pulping of acid-washed samples biotreated under non-aseptic conditions gave similar fibrillation improvements compared to samples subjected to the standard biodegradation process using autoclaved wood chips.
Resumo:
The effect of different culture conditions have been evaluated concerning the extracellular enzyme activities of the white-rot fungus Ceriporiopsis subvermispora growing on Eucalyptus grandis wood. The consequence of the varied fungal pretreatment on a subsequent chemithermomechanical pulping (CTMP) was addressed. In all cultures, manganese peroxidase (MnP) and xylanase were the predominant extracellular enzymes. The biopulping efficiency was evaluated based on the amount of fiber bundles obtained after the first fiberizing step and the fibrillation levels of refined pulps. It was found that the MnP levels in the cultures correlated positively with the biopulping benefits. On the other hand, xylanase and total oxalate levels did not vary significantly. Accordingly, it was not possible to determine whether MnP accomplishes the effect alone or depends on synergic action of other extracellular agents. Pulp strength and fiber size distribution were also evaluated. The average fiber length of CTMP pulps prepared from untreated wood chips was 623 mu m. Analogous values were observed for most of the biopulps; however, significant amounts of shorter fibers were found in the biopulp prepared from wood chips biotreated in cultures supplemented with glucose plus corn-steep liquor. Despite evidence of reduced average fiber length, biopulps prepared from these wood chips presented the highest improvement in tensile indexes (+28% at 23 degrees Schopper-Riegler).
Resumo:
This work work evaluates linoleic acid peroxidation reactions initiated by Fe(3+)-reducing compounds recovered from Eucalyptus grandis, biotreated with the biopulping fungus Ceriporiopsis subvermispora. The aqueous extracts from biotreated wood had the ability to reduce Fe(3+) ions from freshly prepared solutions. The compounds responsible for the Fe(3+)-reducing activity corresponded to UV-absorbing substances with apparent molar masses from 3 kDa to 5 kDa. Linoleic acid peroxidation reactions conducted in the presence of Fe(3+) ions and the Fe(3+)-reducing compounds showed that the rate of O(2) consumption during peroxidation was proportional to the Fe(3+)-reducing activity present in each extract obtained from biotreated wood. This peroxidation reaction was coupled with in-vitro treatment of ball-milled E. grandis wood. Ultraviolet data showed that the reaction system released lignin fragments from the milled wood. Size exclusion chromatography data indicated that the solubilized material contained a minor fraction representing high-molar-mass molecules excluded by the column and a main low-molar-mass peak. Overall evaluation of the data suggested that the Fe(3+)-reducing compounds formed during wood biodegradation by C subvermispora can mediate lignin degradation through linoleic acid peroxidation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In the present study, it was evaluated how two different culture conditions for the biotreatment of Eucalyptus grandis by Ceriporiopsis subvermispora affect a subsequent high-yield kraft pulping process. Under the varied culture conditions investigated, different extracellular enzyme activities were observed. Manganese-peroxidase (MnP) secretion was 3.7 times higher in cultures supplemented with glucose plus corn-steep liquor (glucose/CSL) as compared to non-supplemented (NS) cultures. The biotreated samples underwent diverse levels of wood component degradation as losses of weight and lignin were increased in glucose/CSL cultures. Mass balances for lignin removal during kraft pulping showed that delignification was facilitated when both biotreated wood samples were cooked. Delignification efficiency did not correlate positively with MnP levels in the cultures. On the other hand, biopulps from NS and glucose/CSL cultures saved 27% and 38% beating time to achieve 288 Schopper-Riegler freeness during refining, respectively. Biopulps disposed of decreased tensile and tear resistances, thus easier refining of the biokraft pulps seems to be a consequence of less resistant fiber walls. Improved beatability of biopulps was tentatively related to short fibers and fines formation during refining. We suggest that to some extent polysaccharide depolymerization occurred during the biotreatment, which also resulted in diminished pulp yields in the case of glucose/CSL cultures.
Resumo:
Biopulping of Eucalyptus grandis wood chips with Phanerochaete chrysosporium RP-78 was evaluated under non-aseptic conditions in laboratory and mill wood-yard. The ability of P. chrysosporium to compete with indigenous fungi present in fresh wood chips was notorious under controlled laboratory experiments. A subsequent step involved an industrial test performed with 10-ton of fresh wood chips inoculated and maintained at 37 +/- 38 degrees C for 39 days in a biopulping pilot plant. Biotreated wood chips were pulped in a chemithermomechanical pulping mill. Net energy consumption during refining was 745 kWh ton(-1) and 610 kWh ton(-1) of processed pulp for control and biotreated wood chips, respectively. Accordingly, 18.5% net energy saving could be achieved. Biopulps contained lower shive content and had improved strength properties compared to control pulps. Tensile index improved from 25 +/- 1 N m g(-1) to 33.6 +/- 0.5 N m g(-1) and delamination strength from 217 +/- 19 kPa to 295 +/- 30 kPa.
Resumo:
Despite the importance of Eucalyptus spp. in the pulp and paper industry, functional genomic approaches have only recently been applied to understand wood formation in this genus. We attempted to establish a global view of gene expression in the juvenile cambial region of Eucalyptus grandis Hill ex Maiden. The expression profile was obtained from serial analysis of gene expression (SAGE) library data produced from 3- and 6-year-old trees. Fourteen-base expressed sequence tags (ESTs) were searched against public Eucalyptus ESTs and annotated with GenBank. Altogether 43,304 tags were generated producing 3066 unigenes with three or more copies each, 445 with a putative identity, 215 with unknown function and 2406 without an EST match. The expression profile of the juvenile cambial region revealed the presence of highly frequent transcripts related to general metabolism and energy metabolism, cellular processes, transport, structural components and information pathways. We made a quantitative analysis of a large number of genes involved in the biosynthesis of cellulose, pectin, hemicellulose and lignin. Our findings provide insight into the expression of functionally related genes involved in juvenile wood formation in young fast-growing E. grandis trees.
Resumo:
A procura por madeiras oriundas de reflorestamentos destinadas à serraria é uma realidade já há muitos anos, principalmente aquelas das espécies do gênero Eucalyptus. Visando buscar novas informações importantes para esse mercado, este trabalho objetivou determinar algumas propriedades mecânicas da madeira de um híbrido clonal de Eucalyptus urophylla x Eucalyptus grandis de duas idades e provenientes de talhadia simples e de reforma. Os resultados indicaram que a madeira desse híbrido apresenta boas características tecnológicas, destacando-se a segunda tora (a partir de 3 m) com as melhores propriedades de flexão estática (Módulo de Elasticidade - MOE e Módulo de Ruptura - MOR) e Compressão Axial das fibras. As árvores de maior idade (166 meses) e que sofreram dois desbastes apresentaram as melhores propriedades de flexão estática e compressão axial.
Resumo:
A utilização da madeira de eucalipto na confecção de painéis MDF é recente, tornando-se necessário entender as modificações em sua estrutura anatômica durante as etapas do processo industrial, notadamente no desfibramento dos cavacos. Com esse objetivo, neste estudo foram aplicadas três condições diferenciadas de desfibramento dos cavacos, alterando-se (i) o tempo de aquecimento, (ii) as pressões de digestão e de desfibramento e (iii) a energia específica de desfibramento, sendo avaliadas as características anatômicas dos componentes celulares da madeira. O aumento da intensidade de refino dos cavacos de madeira reduziu o comprimento médio das fibras e aumentou o porcentual de fibras quebradas, corroborando as imagens de microscopia eletrônica de varredura, além da diminuição do número dos vasos e de células de parênquima. Essa condição de desfibramento mais intensa promoveu, também, um característico escurecimento da coloração da polpa composta pelos elementos celulares da madeira. A aplicação de variáveis de desfibramento mais brandas aumentou a presença de feixes de fibras e do número de vasos e de parênquima, resultando em uma polpa de coloração mais clara. As alterações das características morfológicas dos componentes celulares da madeira dos cavacos de eucalipto, após o tratamento de desfibramento, relacionaram-se com as etapas do processo operacional e com a qualidade tecnológica dos painéis de fibras MDF.
Resumo:
Objetivou-se neste trabalho avaliar a variação das dimensões das fibras e dos vasos da madeira de Eucalyptus grandis com quatro diferentes idades (10, 14, 20 e 25 anos), proveniente de talhões comerciais. A amostragem do material na árvore foi feita através da coleta de três discos, retirados da base e das extremidades das duas primeiras toras, ambas com o comprimento comercial de 3 m. De cada disco, retiraram-se cinco amostras, de dimensões 1,0 x 1,0 x 1,0 cm, tomadas de pontos eqüidistantes, correspondentes a 0; 25; 50; 75; e 100% da seção, no sentido radial medula-casca, fazendo-se a medição das fibras e dos vasos. Verificou-se, em todos os parâmetros, o efeito da idade e da variação radial, no sentido medula-casca, à exceção da largura e do diâmetro do lume das fibras; todos os demais parâmetros apresentaram correlação positiva.