912 resultados para Numerical Algorithms and Problems
Resumo:
* Work is partially supported by the Lithuanian State Science and Studies Foundation.
Resumo:
* Work supported by the Lithuanian State Science and Studies Foundation.
Resumo:
* Work is partially supported by the Lithuanian State Science and Studies Foundation.
Resumo:
The asymmetric cipher protocol based on decomposition problem in matrix semiring M over semiring of natural numbers N is presented. The security parameters are defined and preliminary security analysis is presented.
Resumo:
Computing the weighted geometric mean of large sparse matrices is an operation that tends to become rapidly intractable, when the size of the matrices involved grows. However, if we are not interested in the computation of the matrix function itself, but just in that of its product times a vector, the problem turns simpler and there is a chance to solve it even when the matrix mean would actually be impossible to compute. Our interest is motivated by the fact that this calculation has some practical applications, related to the preconditioning of some operators arising in domain decomposition of elliptic problems. In this thesis, we explore how such a computation can be efficiently performed. First, we exploit the properties of the weighted geometric mean and find several equivalent ways to express it through real powers of a matrix. Hence, we focus our attention on matrix powers and examine how well-known techniques can be adapted to the solution of the problem at hand. In particular, we consider two broad families of approaches for the computation of f(A) v, namely quadrature formulae and Krylov subspace methods, and generalize them to the pencil case f(A\B) v. Finally, we provide an extensive experimental evaluation of the proposed algorithms and also try to assess how convergence speed and execution time are influenced by some characteristics of the input matrices. Our results suggest that a few elements have some bearing on the performance and that, although there is no best choice in general, knowing the conditioning and the sparsity of the arguments beforehand can considerably help in choosing the best strategy to tackle the problem.
Resumo:
En este proyecto se desarrollarán algoritmos numéricos para sistemas no lineales hiperbólicos-parabólicos de ecuaciones diferenciales en derivadas parciales. Dichos sistemas tienen aplicación en propagación de ondas en ámbitos aeroespaciales y astrofísicos.Objetivos generales: 1)Desarrollo y mejora de algoritmos numéricos con la finalidad de incrementar la calidad en la simulación de propagación e interacción de ondas gasdinámicas y magnetogasdinámicas no lineales. 2)Desarrollo de códigos computacionales con la finalidad de simular flujos gasdinámicos de elevada entalpía incluyendo cambios químicos, efectos dispersivos y difusivos.3)Desarrollo de códigos computacionales con la finalidad de simular flujos magnetogasdinámicos ideales y reales.4)Aplicación de los nuevos algoritmos y códigos computacionales a la solución del flujo aerotermodinámico alrededor de cuerpos que ingresan en la atmósfera terrestre. 5)Aplicación de los nuevos algoritmos y códigos computacionales a la simulación del comportamiento dinámico no lineal de arcos magnéticos en la corona solar. 6)Desarrollo de nuevos modelos para describir el comportamiento no lineal de arcos magnéticos en la corona solar.Este proyecto presenta como objetivo principal la introducción de mejoras en algoritmos numéricos para simular la propagación e interacción de ondas no lineales en dos medios gaseosos: aquellos que no poseen carga eléctrica libre (flujos gasdinámicos) y aquellos que tienen carga eléctrica libre (flujos magnetogasdinámicos). Al mismo tiempo se desarrollarán códigos computacionales que implementen las mejoras de las técnicas numéricas.Los algoritmos numéricos se aplicarán con la finalidad de incrementar el conocimiento en tópicos de interés en la ingeniería aeroespacial como es el cálculo del flujo de calor y fuerzas aerotermodinámicas que soportan objetos que ingresan a la atmósfera terrestre y en temas de astrofísica como la propagación e interacción de ondas, tanto para la transferencia de energía como para la generación de inestabilidades en arcos magnéticos de la corona solar. Estos dos temas poseen en común las técnicas y algoritmos numéricos con los que serán tratados. Las ecuaciones gasdinámicas y magnetogasdinámicas ideales conforman sistemas hiperbólicos de ecuaciones diferenciales y pueden ser solucionados utilizando "Riemann solvers" junto con el método de volúmenes finitos (Toro 1999; Udrea 1999; LeVeque 1992 y 2005). La inclusión de efectos difusivos genera que los sistemas de ecuaciones resulten hiperbólicos-parabólicos. La contribución parabólica puede ser considerada como términos fuentes y tratada adicionalmente tanto en forma explícita como implícita (Udrea 1999; LeVeque 2005).Para analizar el flujo alrededor de cuerpos que ingresan en la atmósfera se utilizarán las ecuaciones de Navier-Stokes químicamente activas, mientras la temperatura no supere los 6000K. Para mayores temperaturas es necesario considerar efectos de ionización (Anderson, 1989). Tanto los efectos difusivos como los cambios químicos serán considerados como términos fuentes en las ecuaciones de Euler. Para tratar la propagación de ondas, transferencia de energía e inestabilidades en arcos magnéticos de la corona solar se utilizarán las ecuaciones de la magnetogasdinámica ideal y real. En este caso será también conveniente implementar términos fuente para el tratamiento de fenómenos de transporte como el flujo de calor y el de radiación. Los códigos utilizarán la técnica de volúmenes finitos, junto con esquemas "Total Variation Disminishing - TVD" sobre mallas estructuradas y no estructuradas.
Resumo:
Regulatory gene networks contain generic modules, like those involving feedback loops, which are essential for the regulation of many biological functions (Guido et al. in Nature 439:856-860, 2006). We consider a class of self-regulated genes which are the building blocks of many regulatory gene networks, and study the steady-state distribution of the associated Gillespie algorithm by providing efficient numerical algorithms. We also study a regulatory gene network of interest in gene therapy, using mean-field models with time delays. Convergence of the related time-nonhomogeneous Markov chain is established for a class of linear catalytic networks with feedback loops.
Resumo:
This research attempted to address the question of the role of explicit algorithms and episodic contexts in the acquisition of computational procedures for regrouping in subtraction. Three groups of students having difficulty learning to subtract with regrouping were taught procedures for doing so through either an explicit algorithm, an episodic content or an examples approach. It was hypothesized that the use of an explicit algorithm represented in a flow chart format would facilitate the acquisition and retention of specific procedural steps relative to the other two conditions. On the other hand, the use of paragraph stories to create episodic content was expected to facilitate the retrieval of algorithms, particularly in a mixed presentation format. The subjects were tested on similar, near, and far transfer questions over a four-day period. Near and far transfer algorithms were also introduced on Day Two. The results suggested that both explicit and episodic context facilitate performance on questions requiring subtraction with regrouping. However, the differential effects of these two approaches on near and far transfer questions were not as easy to identify. Explicit algorithms may facilitate the acquisition of specific procedural steps while at the same time inhibiting the application of such steps to transfer questions. Similarly, the value of episodic context in cuing the retrieval of an algorithm may be limited by the ability of a subject to identify and classify a new question as an exemplar of a particular episodically deflned problem type or category. The implications of these findings in relation to the procedures employed in the teaching of Mathematics to students with learning problems are discussed in detail.
Resumo:
In this thesis we present some combinatorial optimization problems, suggest models and algorithms for their effective solution. For each problem,we give its description, followed by a short literature review, provide methods to solve it and, finally, present computational results and comparisons with previous works to show the effectiveness of the proposed approaches. The considered problems are: the Generalized Traveling Salesman Problem (GTSP), the Bin Packing Problem with Conflicts(BPPC) and the Fair Layout Problem (FLOP).
Resumo:
In this thesis we made the first steps towards the systematic application of a methodology for automatically building formal models of complex biological systems. Such a methodology could be useful also to design artificial systems possessing desirable properties such as robustness and evolvability. The approach we follow in this thesis is to manipulate formal models by means of adaptive search methods called metaheuristics. In the first part of the thesis we develop state-of-the-art hybrid metaheuristic algorithms to tackle two important problems in genomics, namely, the Haplotype Inference by parsimony and the Founder Sequence Reconstruction Problem. We compare our algorithms with other effective techniques in the literature, we show strength and limitations of our approaches to various problem formulations and, finally, we propose further enhancements that could possibly improve the performance of our algorithms and widen their applicability. In the second part, we concentrate on Boolean network (BN) models of gene regulatory networks (GRNs). We detail our automatic design methodology and apply it to four use cases which correspond to different design criteria and address some limitations of GRN modeling by BNs. Finally, we tackle the Density Classification Problem with the aim of showing the learning capabilities of BNs. Experimental evaluation of this methodology shows its efficacy in producing network that meet our design criteria. Our results, coherently to what has been found in other works, also suggest that networks manipulated by a search process exhibit a mixture of characteristics typical of different dynamical regimes.
Resumo:
The algorithms and graphic user interface software package ?OPT-PROx? are developed to meet food engineering needs related to canned food thermal processing simulation and optimization. The adaptive random search algorithm and its modification coupled with penalty function?s approach, and the finite difference methods with cubic spline approximation are utilized by ?OPT-PROx? package (http://tomakechoice. com/optprox/index.html). The diversity of thermal food processing optimization problems with different objectives and required constraints are solvable by developed software. The geometries supported by the ?OPT-PROx? are the following: (1) cylinder, (2) rectangle, (3) sphere. The mean square error minimization principle is utilized in order to estimate the heat transfer coefficient of food to be heated under optimal condition. The developed user friendly dialogue and used numerical procedures makes the ?OPT-PROx? software useful to food scientists in research and education, as well as to engineers involved in optimization of thermal food processing.
Resumo:
Aquifers are a vital water resource whose quality characteristics must be safeguarded or, if damaged, restored. The extent and complexity of aquifer contamination is related to characteristics of the porous medium, the influence of boundary conditions, and the biological, chemical and physical processes. After the nineties, the efforts of the scientists have been increased exponentially in order to find an efficient way for estimating the hydraulic parameters of the aquifers, and thus, recover the contaminant source position and its release history. To simplify and understand the influence of these various factors on aquifer phenomena, it is common for researchers to use numerical and controlled experiments. This work presents some of these methods, applying and comparing them on data collected during laboratory, field and numerical tests. The work is structured in four parts which present the results and the conclusions of the specific objectives.
Resumo:
A class of priority systems with non-zero switching times, referred as generalized priority systems, is considered. Analytical results regarding the distribution of busy periods, queue lengths and various auxiliary characteristics are presented. These results can be viewed as generalizations of the Kendall functional equation and the Pollaczek-Khintchin transform equation, respectively. Numerical algorithms for systems’ busy periods and traffic coefficients are developed. ACM Computing Classification System (1998): 60K25.
Resumo:
Latency can be defined as the sum of the arrival times at the customers. Minimum latency problems are specially relevant in applications related to humanitarian logistics. This thesis presents algorithms for solving a family of vehicle routing problems with minimum latency. First the latency location routing problem (LLRP) is considered. It consists of determining the subset of depots to be opened, and the routes that a set of homogeneous capacitated vehicles must perform in order to visit a set of customers such that the sum of the demands of the customers assigned to each vehicle does not exceed the capacity of the vehicle. For solving this problem three metaheuristic algorithms combining simulated annealing and variable neighborhood descent, and an iterated local search (ILS) algorithm, are proposed. Furthermore, the multi-depot cumulative capacitated vehicle routing problem (MDCCVRP) and the multi-depot k-traveling repairman problem (MDk-TRP) are solved with the proposed ILS algorithm. The MDCCVRP is a special case of the LLRP in which all the depots can be opened, and the MDk-TRP is a special case of the MDCCVRP in which the capacity constraints are relaxed. Finally, a LLRP with stochastic travel times is studied. A two-stage stochastic programming model and a variable neighborhood search algorithm are proposed for solving the problem. Furthermore a sampling method is developed for tackling instances with an infinite number of scenarios. Extensive computational experiments show that the proposed methods are effective for solving the problems under study.
Resumo:
A previously developed model is used to numerically simulate real clinical cases of the surgical correction of scoliosis. This model consists of one-dimensional finite elements with spatial deformation in which (i) the column is represented by its axis; (ii) the vertebrae are assumed to be rigid; and (iii) the deformability of the column is concentrated in springs that connect the successive rigid elements. The metallic rods used for the surgical correction are modeled by beam elements with linear elastic behavior. To obtain the forces at the connections between the metallic rods and the vertebrae geometrically, non-linear finite element analyses are performed. The tightening sequence determines the magnitude of the forces applied to the patient column, and it is desirable to keep those forces as small as possible. In this study, a Genetic Algorithm optimization is applied to this model in order to determine the sequence that minimizes the corrective forces applied during the surgery. This amounts to find the optimal permutation of integers 1, ... , n, n being the number of vertebrae involved. As such, we are faced with a combinatorial optimization problem isomorph to the Traveling Salesman Problem. The fitness evaluation requires one computing intensive Finite Element Analysis per candidate solution and, thus, a parallel implementation of the Genetic Algorithm is developed.