966 resultados para Nuclear Respiratory Factor 1


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nuclear respiratory factor-1 (NRF1) gene is activated by lipopolysaccharide (LPS), which might reflect TLR4-mediated mitigation of cellular inflammatory damage via initiation of mitochondrial biogenesis. To test this hypothesis, we examined NRF1 promoter regulation by NFκB, and identified interspecies-conserved κB-responsive promoter and intronic elements in the NRF1 locus. In mice, activation of Nrf1 and its downstream target, Tfam, by Escherichia coli was contingent on NFκB, and in LPS-treated hepatocytes, NFκB served as an NRF1 enhancer element in conjunction with NFκB promoter binding. Unexpectedly, optimal NRF1 promoter activity after LPS also required binding by the energy-state-dependent transcription factor CREB. EMSA and ChIP assays confirmed p65 and CREB binding to the NRF1 promoter and p65 binding to intron 1. Functionality for both transcription factors was validated by gene-knockdown studies. LPS regulation of NRF1 led to mtDNA-encoded gene expression and expansion of mtDNA copy number. In cells expressing plasmid constructs containing the NRF-1 promoter and GFP, LPS-dependent reporter activity was abolished by cis-acting κB-element mutations, and nuclear accumulation of NFκB and CREB demonstrated dependence on mitochondrial H(2)O(2). These findings indicate that TLR4-dependent NFκB and CREB activation co-regulate the NRF1 promoter with NFκB intronic enhancement and redox-regulated nuclear translocation, leading to downstream target-gene expression, and identify NRF-1 as an early-phase component of the host antibacterial defenses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

E2F6 is widely expressed in human tissues and cell lines. Recent studies have demonstrated its involvement in developmental patterning and in the regulation of various genes implicated in chromatin remodelling. Despite a growing number of studies, nothing is really known concerning the E2F6 expression regulation. To understand how cells control E2F6 expression, we analysed the activity of the previously cloned promoter region of the human E2F6 gene. DNase I footprinting, gel electrophoretic-mobility shift, transient transfection and site-directed mutagenesis experiments allowed the identification of two functional NRF-1/α-PAL (nuclear respiratory factor-1/α-palindrome-binding protein)-binding sites within the human E2F6 core promoter region, which are conserved in the mouse and rat E2F6 promoter region. Moreover, ChIP (chromatin immunoprecipitation) analysis demonstrated that overexpressed NRF-1/α-PAL is associated in vivo with the E2F6 promoter. Furthermore, overexpression of full-length NRF-1/α-PAL enhanced E2F6 promoter activity, whereas expression of its dominant-negative form reduced the promoter activity. Our results indicate that NRF-1/α-PAL is implicated in the regulation of basal E2F6 gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased expression of Induced-by-High-Glucose 1 (IHG-1) associates with tubulointerstitial fibrosis in diabetic nephropathy. IHG-1 amplifies TGF-ß1 signaling, but the functions of this highly-conserved protein are not well understood. IHG-1 contains a putative mitochondrial-localization domain, and here we report that IHG-1 is specifically localized to mitochondria. IHG-1 overexpression increased mitochondrial mass and stabilized peroxisome proliferator-activated receptor ? coactivator-1a (PGC-1a). Conversely, inhibition of IHG-1 expression decreased mitochondrial mass, downregulated mitochondrial proteins, and PGC-1a-regulated transcription factors, including nuclear respiratory factor 1 and mitochondrial transcription factor A (TFAM), and reduced activity of the TFAM promoter. In the unilateral ureteral obstruction model, we observed higher PGC-1a protein expression and IHG-1 levels with fibrosis. In a gene-expression database, we noted that renal biopsies of human diabetic nephropathy demonstrated higher expression of genes encoding key mitochondrial proteins, including cytochrome c and manganese superoxide dismutase, compared with control biopsies. In summary, these data suggest that IHG-1 increases mitochondrial biogenesis by promoting PGC-1a-dependent processes, potentially contributing to the pathogenesis of renal fibrosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To answer the question whether increased energy demand resulting from myocyte hypertrophy and enhanced $\beta$-myosin heavy chain mRNA, contractile protein synthesis and assembly leads to mitochondrial proliferation and differentiation, we set up an electrical stimulation model of cultured neonatal rat cardiac myocytes. We describe, as a result of increased contractile activity, increased mitochondrial profiles, cytochrome oxidase mRNA, and activity, as well as a switch in mitochondrial carnitine palmitoyltransferase-I (CPT-I) from the liver to muscle isoform. We investigate physiological pathways that lead to accumulation of gene transcripts for nuclear encoded mitochondrial proteins in the heart. Cardiomyocytes were stimulated for varying times up to 72 hr in serum-free culture. The mRNA contents for genes associated with transcriptional activation (c-fos, c-jun, junB, nuclear respiratory factor 1 (Nrf-1)), mitochondrial proliferation (cytochrome c (Cyt c), cytochrome oxidase), and mitochondrial differentiation (carnitine palmitonyltransferase I (CPT-I) isoforms) were measured. The results establish a temporal pattern of mRNA induction beginning with c-fos (0.25-3 hr) and followed by c-jun (0.5-3 hr), junB (0.5-6 hr), NRF-1 (1-12 hr), Cyt c (12-72 hr), cytochrome c oxidase (12-72 hr). Induction of the latter was accompanied by a marked decrease in the liver-specific CPT-I mRNA. Electrical stimulation increased c-fos, $\beta$-myosin heavy chain, and Cyt c promoter activities. These increases coincided with a rise in their respective endogenous gene transcripts. NRF-1, cAMP response element (CRE), and Sp-1 site mutations within the Cyt c promoter reduced luciferase expression in both stimulated and nonstimulated myocytes. Mutations in the Nrf-1 and CRE sites inhibited the induction by electrical stimulation or by transfection of c-jun into non-paced cardiac myocytes whereas mutation of the Sp-1 site maintained or increased the fold induction. This is consistent with the appearance of NRF-1 and fos/jun mRNAs prior to that of Cyt c. Overexpression of c-jun by transfection also activates the Nrf-1 and Cyt c mRNA sequentially. Electrical stimulation of cardiac myocytes activates the c-Jun-N-terminal kinase so that the fold-activation of the cyt c promoter is increased by pacing when either c-jun or c-fos/c-jun are cotransfected. We have identified physical association of Nrf-1 protein with the Nrf-1 enhancer element and of c-Jun with the CRE binding sites on the Cyt c promoter. This is the first demonstration that induction of Nrf-1 and c-Jun by pacing of cardiac myocytes directly mediates Cyt c gene expression and mitochondrial proliferation in response to hypertrophic stimuli in the heart.^ Subsequent to gene activation pathways that lead to mitochondrial proliferation, we observed an isoform switch in CPT-I from the liver to muscle mRNA. We have found that the half-life for the muscle CPT-I is not affected by electrical stimulation, but electrical decrease the T1/2 in the liver CPT-I by greater than 50%. This suggests that the liver CPT-I switch to muscle isoform is due to (1) a decrease in T1/2 of liver CPT-I and (2) activation of muscle CPT-Itranscripts by electrical stimulation. (Abstract shortened by UMI.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical stimulation of neonatal cardiac myocytes produces hypertrophy and cellular maturation with increased mitochondrial content and activity. To investigate the patterns of gene expression associated with these processes, cardiac myocytes were stimulated for varying times up to 72 hr in serum-free culture. The mRNA contents for genes associated with transcriptional activation [c-fos, c-jun, JunB, nuclear respiratory factor 1 (NRF-1)], mitochondrial proliferation [cytochrome c (Cyt c), cytochrome oxidase], and mitochondrial differentiation [carnitine palmitoyltransferase I (CPT-I) isoforms] were measured. The results establish a temporal pattern of mRNA induction beginning with c-fos (0.25–3 hr) and followed sequentially by c-jun (0.5–3 hr), JunB (0.5–6 hr), NRF-1 (112 hr), Cyt c (12–72 hr), and muscle-specific CPT-I (48–72 hr). Induction of the latter was accompanied by a marked decrease in the liver-specific CPT-I mRNA, thus supporting the developmental fidelity of this pattern of gene regulation. Consistent with a transcriptional mechanism, electrical stimulation increased c-fos, β-myosin heavy chain, and Cyt c promoter activities. These increases coincided with a rise in their respective endogenous gene transcripts. NRF-1, cAMP response element, and Sp-1 site mutations within the Cyt c promoter reduced luciferase expression in both stimulated and nonstimulated myocytes. Mutations in the NRF-1 and CRE sites inhibited the induction by electrical stimulation (5-fold and 2-fold, respectively) whereas mutation of the Sp-1 site maintained or increased the fold induction. This finding is consistent with the appearance of NRF-1 and fos/jun mRNAs prior to that of Cyt c and suggests that induction of these transcription factors is a prerequisite for the transcriptional activation of Cyt c expression. These results support a regulatory role for NRF-1 and possibly AP-1 in the initiation of mitochondrial proliferation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondria are actively engaged in the production of cellular energy sources, generation of reactive oxygen species (ROS), and regulation of apoptosis. Mitochondrial DNA (mtDNA) mutations/deletions and other mitochondrial abnormalities have been implicated in many diseases, especially cancer. Despite this, the roles that these defects play in cancer development, drug sensitivity, and disease progression still remain to be elucidated. The major objective of this investigation was to evaluate the mechanistic relationship between mitochondrial defects and alterations in free radical generation and chemosensitivity in primary chronic lymphocytic leukemia (CLL) cells. This study revealed that the mtDNA mutation frequency and basal superoxide generation are both significantly higher in primary cells from CLL patients with a history of chemotherapy as compared to cells from their untreated counterparts. CLL cells from refractory patients tended to have high mutation frequencies. The data suggest that chemotherapy with DNA-damaging agents may cause mtDNA mutations, which are associated with increased ROS generation and reduced drug sensitivity. Subsequent analyses demonstrated that CLL cells contain significantly more mitochondria than normal lymphocytes. This abnormal accumulation of mitochondria was linked to increased expression of nuclear respiratory factor-1 and mitochondrial transcription factor A, two key free radical-regulated mitochondrial biogenesis factors. Further analysis showed that mitochondrial content may have therapeutic implications since patient cells with high mitochondrial mass display significantly reduced in vitro sensitivity to fludarabine, a frontline agent in CLL therapy. The reduced in vitro and in vivo sensitivity to fludarabine observed in CLL cells with mitochondrial defects highlights the need for novel therapeutic strategies for the treatment of refractory disease. Brefeldin A, an inhibitor of endoplasmic reticulum (ER) to Golgi protein transport that is being developed as an anticancer agent, effectively induces apoptosis in fludarabine-refractory CLL cells through a secretory stress-mediated mechanism involving intracellular sequestration of pro-survival secretory factors. Taken together, these data indicate that mitochondrial defects in CLL cells are associated with alterations in free radical generation, mitochondrial biogenesis activity, and chemosensitivity. Abrogation of survival signaling by blocking ER to Golgi protein transport may be a promising therapeutic strategy for the treatment of CLL patients that respond poorly to conventional chemotherapy. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein-DNA interactions were studied in vivo at the region containing a human DNA replication origin, located at the 3' end of the lamin B2 gene and partially overlapping the promoter of another gene, located downstream. DNase I treatment of nuclei isolated from both exponentially growing and nonproliferating HL-60 cells showed that this region has an altered, highly accessible, chromatin structure. High-resolution analysis of protein-DNA interactions in a 600-bp area encompassing the origin was carried out by the in vivo footprinting technique based on the ligation-mediated polymerase chain reaction. In growing HL-60 cells, footprints at sequences homologous to binding sites for known transcription factors (members of the basic-helix-loop-helix family, nuclear respiratory factor 1, transcription factor Sp1, and upstream binding factor) were detected in the region corresponding to the promoter of the downstream gene. Upon conversion of cells to a nonproliferative state, a reduction in the intensity of these footprints was observed that paralleled the diminished transcriptional activity of the genomic area. In addition to these protections, in close correspondence to the replication initiation site, a prominent footprint was detected that extended over 70 nucleotides on one strand only. This footprint was absent from nonproliferating HL-60 cells, indicating that this specific protein-DNA interaction might be involved in the process of origin activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer is a disease associated with excess exposures to estrogens. While the mode of cancer causation is unknown, others have shown that oxidative stress induced by prolonged exposure to estrogens mediates renal, liver, endometrial and mammary tumorigenesis though the mechanism(s) underling this process is unknown. In this study, we show that 4-hydroxyl 17β-estradiol (4-OHE2), a catechol metabolite of estrogen, induces mammary tumorigenesis in a redox dependent manner. We found that the mechanism of tumorigenesis involves redox activations of nuclear respiratory factor-1 (NRF1); a transcriptions factor associated with regulation of mitochondria biogenesis and oxidative phosphorylation (OXPHOS), as well as mediation of cell survival and growth of cells during periods of oxidative stress. Key findings from our study are as follows: (i) Prolonged treatments of normal mammary epithelial cells with 4-OHE2, increased the formation of intracellular reactive oxygen species (ROS). (ii) Estrogen-induced ROS activates redox sensitive transcription factors NRF1. (iii) 4-OHE2 through activation of serine-threonine kinase and histone acetyl transferase, phosphorylates and acetylate NRF1 respectively. (iv) Redox mediated epigenetic modifications of NRF1 facilitates mammary tumorigenesis and invasive phenotypes of breast cancer cells via modulations of genes involved in proliferation, growth and metastasis of exposed cells. (v) Animal engraftment of transformed clones formed invasive tumors. (vi) Treatment of cells or tumors with biological or chemical antioxidants, as well as silencing of NRF1 expressions, prevented 4-OHE2 induced mammary tumorigenesis and invasive phenotypes of MCF-10A cells. Based on these observations, we hypothesize that 4-OHE2 induced ROS epigenetically activate NRF1 through its phosphorylation and acylation. This, in turn, through NRF1-mediated transcriptional activation of the cell cycle genes, controls 4-OHE2 induced cell transformation and tumorigenesis.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the effects of 17-β-estradiol (E2)-induced reactive oxygen species (ROS) on the induction of mammary tumorigenesis. We found that ROS-induced by repeated exposures to 4-hydroxy-estradiol (4-OH-E2), a predominant catechol metabolite of E2, caused transformation of normal human mammary epithelial MCF-10A cells with malignant growth in nude mice. This was evident from inhibition of estrogen-induced breast tumor formation in the xenograft model by both overexpression of catalase as well as by co-treatment with Ebselen. To understand how 4-OH-E2 induces this malignant phenotype through ROS, we investigated the effects of 4-OH-E2 on redox-sensitive signal transduction pathways. During the malignant transformation process we observed that 4-OH-E2 treatment increased AKT phosphorylation through PI3K activation. The PI3K-mediated phosphorylation of AKT in 4-OH-E2-treated cells was inhibited by ROS modifiers as well as by silencing of AKT expression. RNA interference of AKT markedly inhibited 4-OH-E2-induced in vitro tumor formation. The expression of cell cycle genes, cdc2, PRC1 and PCNA and one of transcription factors that control the expression of these genes – nuclear respiratory factor-1 (NRF-1) was significantly up-regulated during the 4-OH-E2-mediated malignant transformation process. The increased expression of these genes was inhibited by ROS modifiers as well as by silencing of AKT expression. These results indicate that 4-OH-E2-induced cell transformation may be mediated, in part, through redox-sensitive AKT signal transduction pathways by up-regulating the expression of cell cycle genes cdc2, PRC1 and PCNA, and the transcription factor – NRF-1. In summary, our study has demonstrated that: (i) 4-OH-E2 is one of the main estrogen metabolites that induce mammary tumorigenesis and (ii) ROS-mediated signaling leading to the activation of PI3K/AKT pathway plays an important role in the generation of 4-OH-E2-induced malignant phenotype of breast epithelial cells. In conclusion, ROS are important signaling molecules in the development of estrogen-induced malignant breast lesions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations in Na+-glucose transporters (SGLT)-2 and hepatocyte nuclear factor (HNF)-1 alpha genes have been related to renal glycosuria and maturity-onset diabetes of the young 3, respectively. However, the expression of these genes have not been investigated in type 1 and type 2 diabetes. Here in kidney of diabetic rats, we tested the hypotheses that SGLT2 mRNA expression is altered; HNF-1 alpha is involved in this regulation; and glycemic homeostasis is a related mechanism. The in vivo binding of HNF-1 alpha into the SGLT2 promoter region in renal cortex was confirmed by chromatin immunoprecipitation assay. SGLT2 and HNF-1 alpha mRNA expression (by Northern and RT-PCR analysis) and HNF-1 binding activity of nuclear proteins (by EMSA) were investigated in diabetic rats and treated or not with insulin or phlorizin (an inhibitor of SGLT2). Results showed that diabetes increases SGLT2 and HNF-1 alpha mRNA expression (similar to 50%) and binding of nuclear proteins to a HNF-1 consensus motif (similar to 100%). Six days of insulin or phlorizin treatment restores these parameters to nondiabetic-rat levels. Moreover, both treatments similarly reduced glycemia, despite the differences in plasma insulin and urinary glucose concentrations, highlighting the plasma glucose levels as involved in the observed modulations. This study shows that SGLT2 mRNA expression and HNF-1 alpha expression and activity correlate positively in kidney of diabetic rats. It also shows that diabetes-induced changes are reversed by lowering glycemia, independently of insulinemia. Our demonstration that HNF-1 alpha binds DNA that encodes SGLT2 supports the hypothesis that HNF-1 alpha, as a modulator of SGLT2 expression, may be involved in diabetic kidney disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thyroid transcription factor 1 (TTF-1) is encoded by the NKX2-1 homeobox gene. Besides specifying thyroid and pulmonary organogenesis, it is also temporarily expressed during embryonic development of the ventral forebrain. We recently observed widespread immunoreactivity for TTF-1 in a case of subependymal giant cell astrocytoma (SEGA, WHO grade I) – a defining lesion of the tuberous sclerosis complex (TSC). This prompted us to investigate additional SEGAs in this regard. We found tumor cells in all 7 specimens analyzed to be TTF-1 positive. In contrast, we did not find TTF-1 immunoreactivity in a cortical tuber or two renal angiomyolipomas resected from TSC patients. We propose our finding of consistent TTF-1 expression in SEGAs to indicate lineage-committed derivation of these tumors from a regionally specified cell of origin. The medial ganglionic eminence, ventral septal region, and preoptic area of the developing brain may represent candidates for the origin of SEGAs. Such lineagerestricted histogenesis may also explain the stereotypic distribution of SEGAs along the caudate nucleus in the lateral ventricles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steroidogenic factor 1 (SF-1), an orphan member of the intracellular receptor superfamily, plays an essential role in the development and function of multiple endocrine organs. It is expressed in all steroidogenic tissues where it regulates the P450 steroidogenic genes to generate physiologically active steroids. Although many of the functions of SF-1 in vivo have been defined, an unresolved question is whether a ligand modulates its transcriptional activity. Here, we show that 25-, 26-, or 27-hydroxycholesterol, known suppressors of cholesterol biosynthesis, enhance SF-1-dependent transcriptional activity. This activation is dependent upon the SF-1 activation function domain, and, is specific for SF-1 as several other receptors do not respond to these molecules. The oxysterols activate at concentrations comparable to those previously shown to inhibit cholesterol biosynthesis, and, can be derived from cholesterol by P450c27, an enzyme expressed within steroidogenic tissues. Recent studies have shown that the nuclear receptor LXR also is activated by oxysterols. We demonstrate that different oxysterols differ in their rank order potency for these two receptors, with 25-hydroxycholesterol preferentially activating SF-1 and 22(R)-hydroxycholesterol preferentially activating LXR. These results suggest that specific oxysterols may mediate transcriptional activation via different intracellular receptors. Finally, ligand-dependent transactivation of SF-1 by oxysterols may play an important role in enhancing steroidogenesis in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nuclear LIM domains interact with a family of coregulators referred to as Clim/Ldb/Nli. Although one family member, Clim-2/Ldb-1/Nli, is highly expressed in epidermal keratinocytes, no nuclear LIM domain factor is known to be expressed in epidermis. Therefore, we used the conserved LIM-interaction domain of Clim coregulators to screen for LIM domain factors in adult and embryonic mouse skin expression libraries and isolated a factor that is highly homologous to the previously described LIM-only proteins LMO-1, -2, and -3. This factor, referred to as LMO-4, is expressed in overlapping manner with Clim-2 in epidermis and in several other regions, including epithelial cells of the gastrointestinal, respiratory and genitourinary tracts, developing cartilage, pituitary gland, and discrete regions of the central and peripheral nervous system. Like LMO-2, LMO-4 interacts strongly with Clim factors via its LIM domain. Because LMO/Clim complexes are thought to regulate gene expression by associating with DNA-binding proteins, we used LMO-4 as a bait to screen for such DNA-binding proteins in epidermis and isolated the mouse homologue of Drosophila Deformed epidermal autoregulatory factor 1 (DEAF-1), a DNA-binding protein that interacts with regulatory sequences first described in the Deformed epidermal autoregulatory element. The interaction between LMO-4 and mouse DEAF-1 maps to a proline-rich C-terminal domain of mouse DEAF-1, distinct from the helix–loop–helix and GATA domains previously shown to interact with LMOs, thus defining an additional LIM-interacting domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between the enzymatic and the transcriptional activity of the bifunctional protein pterin-4a-carbinolamine dehydratase/dimerization cofactor for hepatocyte nuclear factor 1 (DCoH) has been elucidated by site-directed mutagenesis. DCoH dimers harbor a binding site for hepatocyte nuclear factor 1 (HNF1), two active centers that bind pterins, and a saddle-shaped surface that resembles nucleic acid binding domains. Two domains of the protein have been selectively targeted to determine if a change in one activity affects the other. No strong correlation has been found, supporting the idea that carbinolamine dehydratase activity is not required for HNF1 binding in vitro or transcriptional coactivation in vivo. Double mutations in the active center, however, influence the in vivo transcriptional activity but not HNF1 binding. This finding suggests that some active center residues also are used during transcription, possibly for binding of another (macro)molecule. Several mutations in the saddle led to a surprising increase in transcription, therefore linking this domain to transcriptional regulation as well. The transcriptional function of DCoH therefore is composed of two parts, HNF1 binding and another contributing effect that involves the active site and, indirectly, the saddle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostrate Cancer(PCa)is the most common cause of cancer death amongst Western males. PCa occurs in two distinct stages. In its early stage, growth and development is dependent primarily on male sex hormones (androgens) such as testosterone, although other growth factors have roles maintaining PCa cell survival in this stage. In the later stage of PCa development, growth and.maintenance is independent of androgen stimulation and growth factors including Insulin-like Growth Factor -1 (IGf.:·l) and Epidermal Growth Factor (EGF) are thought to have more crucial roles in cell survival and PCa progression. PCa, in its late stages, is highly aggressive and metastatic, that is, tumorigenic cells migrate from the primary site of the body (prostate) and travel via the systemic and lymphatic circulation, residing and colonising in the bone, lymph node, lung, and in more rare cases, the brain. Metastasis involves both cell migration and tissue degradation activities. The degradation of the extracellular matrix (ECM), the tissue surrounding the organ, is mediated in part by members of a family of 26 proteins called the Matrix Metalloproteases (MMPs), whilst ceil adhesion molecules, of which proteins known as Integrins are included, mediate ce11 migration. A family of proteins known as the ADAMs (A Disintegrin . And Metalloprotease domain) were a recently characterised family at the commencement of this study and now comprise 34 members. Because of their dual nature, possessing an active metaiioprotease domain, homologous to that of the MMPs, and an integrin-binding domain capable of regulating cell-cell and cell-ECM contacts, it was thought likely that members of the ADAMs family may have implications for the progression of aggressive cancers such as those ofthe prostate. This study focussed on two particular ADAMs -9 and -10. ADAM-9 has an active metalloprotease domain, which has been shown to degrade constituents of the ECM, including fibronectin, in vitro. It also has an integrin-binding capacity through association with key integrins involved in PCa progression, such as a6~1. ADAM-10 has no such integrin binding activities, but its bovine orthologue, MADM, is able to degrade coHagen type IV, a major component of basement membranes. It is likely human ADAM-10 has the same activity. It is also known to cleave Ll -a protein involved in cell anchorage activities - and collagen type XVII - which is a principal component of the hemidesmosomes of cellular tight junctions. The cleavage of these proteins enables the cell to be released from the surrounding environment and commence migratory activities, as required in metastasis. Previous studies in this laboratory showed the mRNA expression of the five ADAMs -9,- 10, -11, -15 and -17 in PCa cell lines, characteristic of androgen-dependent and androgen independent disease. These studies were furthered by the characterisation of AD AM-9, -10 and -17 mRNA regulation by Dihydrotestosterone (DHT) in the androgen-responsive cell line (LNCaP). ADAM-9 and -10 mRNA levels were elevated in response to DHT stimulation. Further to these observations, the expression of ADAM-9 and -10 was shown in primary prostate biopsies from patients with PCa. ADAM-1 0 was expressed in the cytoplasm and on the ceH membrane in epithelial and basal cells ofbenign prostate glands, but in high-grade PCa glands, ADAM-I 0 expression was localised to the nucleus and its expression levels appeared to be elevated when compared to low-grade PCa glands. These studies provided a strong background for the hypothesis that ADAM-9 and -10 have key roles in the development ofPCa and provided a basis for further studies.The aims of this study were to: 1) characterise the expression, localisation and levels, of ADAM-9 and -10 mRNA and protein in cell models representing characteristics of normal through androgen-dependent to androgen-independent PCa, as well as to expand the primary PCa biopsy data for ADAM-9 and ADAM-10 to encompass PCa bone metastases 2) establish an in vitro cell system, which could express elevated levels of ADAM-1 0 so that functional cell-based assays such as cell migration, invasion and attachment could be carried out, and 3) to extend the previous hormonal regulation data, to fully characterise the response of ADAM-9 and -10 mRNA and protein levels to DHT, IGF-1, DHT plus IGF-1 and EGF in the hormonal/growth factor responsive cell line LNCaP. For aim 1 (expression of ADAM-9 and -10 mRNA and protein), ADAM-9 and -10 mRNA were characterised by R T -PCR, while their protein products were analysed by Western blot. Both ADAM-9 and -10 mRNA and protein were expressed at readily detectable levels across progressively metastatic PCa cell lines model that represent characteristics of low-grade,. androgen-dependent (LNCaP and C4) to high-grade, androgen-independent (C4-2 and C4-2B) PCa. When the non-tumorigenic prostate cell line RWPE-1 was compared with the metastatic PCa cell line PC-3, differential expression patterns were seen by Western blot analysis. For ADAM-9, the active form was expressed at higher levels in RWPE-1, whilst subcellular fractionation showed that the active form of ADAM-9 was predominantly located in the cell nucleus. For ADAM-I 0, in both of the cell Jines, a nuclear specific isoform of the mature, catalytically active ADAM-I 0 was found. This isoforrn differed by -2 kDa in Mr (smaller) than the cytoplasmic specific isoform. Unprocessed ADAM-I 0 was readily detected in R WPE-1 cell lines but only occasionally detected in PC-3 cell lines. Immunocytochemistry using ADAM-9 and -10 specific antibodies confirmed nuclear, cytoplasmic and membrane expression of both ADAMs in these two cell lines. To examine the possibility of ADAM-9 and -10 being shed into the extracellular environment, membrane vesicles that are constitutively shed from the cell surface and contain membrane-associated proteins were collected from the media of the prostate cell lines RWPE-1, LNCaP and PC-3. ADAM-9 was readily detectable in RWPE- 1 and LNCaP cell membrane vesicles by Western blot analysis, but not in PC-3 cells, whilst the expression of ADAM-I 0 was detected in shed vesicles from each of these prostate cell lines. By Laser Capture Microdissection (LCM), secretory epithelial cells of primary prostate gland biopsies were isolated from benign and malignant glands. These secretory cells, by Western blot analysis, expressed similar Mr bands for ADAM-9 and -10 that were found in PCa cell lines in vitro, indicating that the nuclear specific isoforrn of ADAM-I 0 was present in PCa primary tumours and may represent the predominantly nuclear form of ADAM-I 0 expression, previously shown in high-grade PCa by immunohistochemistry (IHC). ADAM-9 and -10 were also examined by IHC in bone metastases taken from PCa patients at biopsy. Both ADAMs could be detected at levels similar to those shown for Prostate Specific Antigen (PSA) in these biopsies. Furthermore, both ADAM-9 and -10 were predominantly membrane- bound with occasional nuclear expression. For aim 2, to establish a cell system that over-expressed levels of ADAM-10, two fulllength ADAM-I 0 mammalian expression vectors were constructed; ADAM-I 0 was cloned into pcDNA3.1, which contains a CMV promoter, and into pMEP4, containing an inducible metallothionine promoter, whose activity is stimulated by the addition of CdC}z. The efficiency of these two constructs was tested by way of transient transfection in the PCa cell line PC-3, whilst the pcDNA3.1 construct was also tested in the RWPE-1 prostate cell line. Resultant Western blot analysis for all transient transfection assays showed that levels of ADAM-I 0 were not significantly elevated in any case, when compared to levels of the housekeeping gene ~-Tubulin, despite testing various levels of vector DNA, and, for pMEP4, the induction of the transfected cell system with different degrees of stimulation with CdCh to activate the metallothionine promoter post-transfection. Another study in this laboratory found similar results when the same full length ADAM-10 sequence was cloned into a Green Fluorescent Protein (GFP) expressing vector, as no fluorescence was observed by means of transient tran sfection in the same, and other, PCa cell lines. It was hypothesised that the Kozak sequence included in the full-length construct (human ADAMI 0 naturally occurring sequence) is not strong enough to initiate translation in an artificial system, in cells, which, as described in Aim 1, are already expressing readily detectable levels of endogenous ADAM-10. As a result, time constraints prevented any further progress with Aim 2 and functional studies including cell attachment, invasion and migration were unable to be explored. For Aim 3, to characterise the response of ADAM-9 and -10 mRNA and protein levels to DHT, IGF-1, DHT plus IGF-1 and EGF in LNCaP cells, the levels of ADAM-9 and -10 mRNA were not stimulated by DHT or IGF-I alone, despite our previous observations that initially characterised ADAM-9 and -10 mRNA as being responsive to DHT. However, IGF-1 in synergy with DHT did significantly elevate mRNA levels ofboth ADAMs. In the case of ADAM-9 and -10 protein, the same trends of stimulation as found at the rnRNA level were shown by Western blot analysis when ADAM-9 and -10 signal intensity was normalised with the housekeeping protein ~-Tubulin. For EGF treatment, both ADAM-9 and -10 mRNA and protein levels were significantly elevated, and further investigation vm found this to be the case for each of these ADAMs proteins in the nuclear fractions of LNCaP cells. These studies are the first to describe extensively, the expression and hormonal/growth factor regulation of two members of the ADAMs family ( -9 and -1 0) in PCa. These observations imply that the expression of ADAM-9 and -10 have varied roles in PCa whilst it develops from androgen-sensitive (early stage disease), through to an androgeninsensitive (late-stage), metastatic disease. Further studies are now required to investigate the several key areas of focus that this research has revealed, including: • Investigation of the cellular mechanisms that are involved in actively transporting the ADAMs to the cell's nuclear compartment and the ADAMs functional roles in the cell nucleus. • The construction of a full-length human ADAM-10 mammalian expression construct with the introduction of a new Kozak sequence, that elevates ADAM-I 0 expression in an in vitro cell system are required, so that functional assays such as cell invasion, migration and attachment may be carried out to fmd the functional consequences of ADAM expression on cellular behaviour. • The regulation studies also need to be extended by confirming the preliminary observations that the nuclear levels of ADAMs may also be elevated by hormones and growth factors such as DHT, IGF-1 and EGF, as well as the regulation of levels of plasma membrany vesicle associated ADAM expression. Given the data presented in this study, it is likely the ADAMs have differential roles throughout the development of PCa due to their differential cellular localisation and synergistic growth-factor regulation. These observations, along with those further studies outlined above, are necessary in identifying these specific components ofPCa metastasis to which the ADAMs may contribute.