896 resultados para Novel human transcripts


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The correct identification of all human genes, and their derived transcripts, has not yet been achieved, and it remains one of the major aims of the worldwide genomics community. Computational programs suggest the existence of 30,000 to 40,000 human genes. However, definitive gene identification can only be achieved by experimental approaches. We used two distinct methodologies, one based on the alignment of mouse orthologous sequences to the human genome, and another based on the construction of a high-quality human testis cDNA library, in an attempt to identify new human transcripts within the human genome sequence. We generated 47 complete human transcript sequences, comprising 27 unannotated and 20 annotated sequences. Eight of these transcripts are variants of previously known genes. These transcripts were characterized according to size, number of exons, and chromosomal localization, and a search for protein domains was undertaken based on their putative open reading frames. In silico expression analysis suggests that some of these transcripts are expressed at low levels and in a restricted set of tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the cloning and characterization of a new member of the vascular endothelial growth factor (VEGF) gene family, which we have designated VRF for VEGF-related-factor. Sequencing of cDNAs from a human fetal brain library and RT-PCR products from normal and tumor tissue cDNA pools indicate two alternatively spliced messages with open reading frames of 621 and 564 bp, respectively. The predicted proteins differ at their carboxyl ends resulting from a shift in the open reading frame. Both isoforms show strong homology to VEGF at their amino termini, but only the shorter isoform maintains homology to VEGF at its carboxyl terminus and conserves all 16 cysteine residues of VEGF165. Similarity comparisons of this isoform revealed overall protein identity of 48% and conservative substitution of 69% with VEGF189. VRF is predicted to contain a signal peptide, suggesting that it may be a secreted factor. The VRF gene maps to the D11S750 locus at chromosome band 11q13, and the protein coding region, spanning approximately 5 kb, is comprised of 8 exons that range in size from 36 to 431 bp. Exons 6 and 7 are contiguous and the two isoforms of VRF arise through alternate splicing of exon 6. VRF appears to be ubiquitously expressed as two transcripts of 2.0 and 5.5 kb; the level of expression is similar among normal and malignant tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed and validated a semi-automated fluorescent method of genotyping human leucocyte antigen (HLA)-DRB1 alleles, HLA-DRB1*01-16, by multiplex primer extension reactions. This method is based on the extension of a primer that anneals immediately adjacent to the single-nucleotide polymorphism with fluorescent dideoxynucleotide triphosphates (minisequencing), followed by analysis on an ABI Prism 3700 capillary electrophoresis instrument. The validity of the method was confirmed by genotyping 261 individuals using both this method and polymerase chain reaction with sequence-specific primer (PCR-SSP) or sequencing and by demonstrating Mendelian inheritance of HLA-DRB1 alleles in families. Our method provides a rapid means of performing high-throughput HLA-DRB1 genotyping using only two PCR reactions followed by four multiplex primer extension reactions and PCR-SSP for some allele groups. In this article, we describe the method and discuss its advantages and limitations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neuronal ceroid lipofuscinoses (NCLs) are a group of mostly autosomal recessively inherited neurodegenerative disorders. The aim of this thesis was to characterize the molecular genetic bases of these, previously genetically undetermined, NCL forms. Congenital NCL is the most aggressive form of NCLs. Previously, a mutation in the cathepsin D (CTSD) gene was shown to cause congenital NCL in sheep. Based on the close resemblance of the phenotypes between congenital NCLs in sheep and human, CTSD was considered as a potential candidate gene in humans as well. When screened for mutations by sequencing, a homozygous nucleotide duplication creating a premature stop codon was identified in CTSD in one family with congenital NCL. While in vitro the overexpressed truncated mutant protein was stable although inactive, the absence of CTSD staining in brain tissue samples of patients indicated degradation of the mutant CTSD in vivo. A lack of CTSD staining was detected also in another, unrelated family with congenital NCL. These results imply that CTSD deficiency underlies congenital NCL. While initially Turkish vLINCL was considered a distinct genetic entity (CLN7), mutations in the CLN8 gene were later reported to account for the disease in a subset of Turkish patients with vLINCL. To further dissect the genetic basis of the disease, all known NCL genes were screened for homozygosity by haplotype analysis of microsatellite markers and/or sequenced in 13 mainly consanguineous, Turkish vLINCL families. Two novel, family-specific homozygous mutations were identified in the CLN6 gene. In the remaining families, all known NCL loci were excluded. To identify novel gene(s) underlying vLINCL, a genomewide single nucleotide polymorphism scan, homozygosity mapping, and positional candidate gene sequencing were performed in ten of these families. On chromosome 4q28.1-q28.2, a novel major facilitator superfamily domain containing 8 (MFSD8) gene with six family-specific homozygous mutations in vLINCL patients was identified. MFSD8 transcript was shown to be ubiquitously expressed with a complex pattern of alternative splicing. Our results suggest that MFSD8 is a novel lysosomal integral membrane protein which, as a member of the major facilitator superfamily, is predicted to function as a transporter. Identification of MFSD8 emphasizes the genetic heterogeneity of Turkish vLINCL. In families where no MFSD8 mutations were detected, additional NCL-causing genes remain to be identified. The identification of CTSD and MFSD8 increases the number of known human NCL-causing genes to eight, and is an important step towards the complete understanding of the genetic spectrum underlying NCLs. In addition, it is a starting point for dissecting the molecular mechanisms behind the associated NCLs and contributes to the challenging task of understanding the molecular pathology underlying the group of NCL disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper explores a novel tactile human-machine interface based on the controlled stimulation of mechanoreceptors by a subdermal magnetic implant manipulated through an external electromagnet. The selection of a suitable implant magnet and implant site is discussed and an external interface for manipulating the implant is described. The paper also reports on the basic properties of such an interface, including magnetic field strength sensitivity and frequency sensitivity obtained through experimentation on two participants. Finally, the paper presents two practical application scenarios for the interface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the results of a transcript finishing initiative, undertaken for the purpose of identifying and characterizing novel human transcripts, in which RT-PCR was used to bridge gaps between paired EST Clusters, mapped against the genomic sequence. Each pair of EST Clusters selected for experimental validation was designated a transcript finishing unit (TFU). A total of 489 TFUs were selected for validation, and an overall efficiency of 43.1% was achieved. We generated a total of 59,975 bp of transcribed sequences organized into 432 exons, contributing to the definition of the structure of 211 human transcripts. The structure of several transcripts reported here was confirmed during the course of this project, through the generation of their corresponding full-length cDNA sequences. Nevertheless, for 21% of the validated TFUs, a full-length cDNA sequence is not yet available in public databases, and the structure of 69.2% of these TFUs was not correctly predicted by computer programs. The TF strategy provides a significant contribution to the definition of the complete catalog of human genes and transcripts, because it appears to be particularly useful for identification of low abundance transcripts expressed in a restricted Set of tissues as well as for the delineation of gene boundaries and alternatively spliced isoforms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adhesion, immune evasion and invasion are key determinants during bacterial pathogenesis. Pathogenic bacteria possess a wide variety of surface exposed and secreted proteins which allow them to adhere to tissues, escape the immune system and spread throughout the human body. Therefore, extensive contacts between the human and the bacterial extracellular proteomes take place at the host-pathogen interface at the protein level. Recent researches emphasized the importance of a global and deeper understanding of the molecular mechanisms which underlie bacterial immune evasion and pathogenesis. Through the use of a large-scale, unbiased, protein microarray-based approach and of wide libraries of human and bacterial purified proteins, novel host-pathogen interactions were identified. This approach was first applied to Staphylococcus aureus, cause of a wide variety of diseases ranging from skin infections to endocarditis and sepsis. The screening led to the identification of several novel interactions between the human and the S. aureus extracellular proteomes. The interaction between the S. aureus immune evasion protein FLIPr (formyl-peptide receptor like-1 inhibitory protein) and the human complement component C1q, key players of the offense-defense fighting, was characterized using label-free techniques and functional assays. The same approach was also applied to Neisseria meningitidis, major cause of bacterial meningitis and fulminant sepsis worldwide. The screening led to the identification of several potential human receptors for the neisserial adhesin A (NadA), an important adhesion protein and key determinant of meningococcal interactions with the human host at various stages. The interaction between NadA and human LOX-1 (low-density oxidized lipoprotein receptor) was confirmed using label-free technologies and cell binding experiments in vitro. Taken together, these two examples provided concrete insights into S. aureus and N. meningitidis pathogenesis, and identified protein microarray coupled with appropriate validation methodologies as a powerful large scale tool for host-pathogen interactions studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular events involved in specification of early hematopoietic system are not well known. In Xenopus, a paired-box homeodomain family (Mix.1–4) has been implicated in this process. Although Mix-like homeobox genes have been isolated from zebrafish (bon), chicken (CMIX) and mice (MmI/MIXL1), isolation of a human Mix-like gene has remained elusive. ^ We have recently isolated and characterized a novel human Mix-like homeobox gene with a predicted open reading frame of 232 amino acids designated the Mix.1 homeobox (Xenopus laevis)-like gene (MIXL). The overall identity of this novel protein to CMIX and MmI/MIXL1 is 41% and 69%, respectively. However, the identity in the homeodomain is 66% to that of Xenopus Mix.1, 79% to that of CMIX, and 94% to that of MmI/MIXL1. In normal hematopoiesis, MIXL expression appears to be restricted immature B and T lymphoid cells. Several acute leukemic cell lines of B, T and myeloid lineages express MIXL suggesting a survival/block in differentiation advantage. Furthermore, Xenopus animal cap assay revealed that MIXL could induce expression of the α-globin gene, suggesting a functional conservation of the homeodomain. ^ Biochemical analysis revealed that MIXL proteins are phosphorylated at multiple sites. Immunoprecipitation and immunoblotting confirmed that MIXL is tyrosine phosphorylated. Mutational analysis determined that Tyr20 appears to be the site for phosphorylation. However, deletion analysis preliminarily showed that the proline-rich domain appears not to be necessary for tyrosine phosphorylation. The novel finding will help us make a deeper understanding of the regulation on homeodomain proteins by rarely reported tyrosine phosphorylation. ^ Taken together, isolation of the MIXL gene is the first step toward understanding novel regulatory circuits in early hematopoietic differentiation and malignant transformation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The DNA mismatch repair (MMR) is a specialized system, highly conserved throughout evolution, involved in the maintenance of genomic integrity. To identify novel human genes that may function in MMR, we employed the yeast interaction trap. Using the MMR protein MLH1 as bait, we cloned MED1. The MED1 protein forms a complex with MLH1, binds to methyl-CpG-containing DNA, has homology to bacterial DNA repair glycosylases/lyases, and displays endonuclease activity. Transfection of a MED1 mutant lacking the methyl-CpG-binding domain (MBD) is associated with microsatellite instability (MSI). These findings suggest that MED1 is a novel human DNA repair protein that may be involved in MMR and, as such, may be a candidate eukaryotic homologue of the bacterial MMR endonuclease, MutH. In addition, these results suggest that cytosine methylation may play a role in human DNA repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple growth factors synergistically stimulate proliferation of primitive hematopoietic progenitor cells. A human myeloid cell line, KPB-M15, constitutively produces a novel hematopoietic cytokine, termed stem cell growth factor (SCGF), possessing species-specific proliferative activities. Here we report the molecular cloning, expression, and characterization of a cDNA encoding human SCGF using a newly developed λSHDM vector that is more efficient for differential and expression cloning. cDNA for SCGF encodes a 29-kDa polypeptide without N-linked glycosylation. SCGF transiently produced by COS-1 cells supports growth of hematopoietic progenitor cells through a short-term liquid culture of bone marrow cells and exhibits promoting activities on erythroid and granulocyte/macrophage progenitor cells in primary semisolid culture with erythropoietin and granulocyte/macrophage colony-stimulating factor, respectively. Expression of SCGF mRNA is restricted to myeloid cells and fibroblasts, suggesting that SCGF is a growth factor functioning within the hematopoietic microenvironment. SCGF could disclose some human-specific mechanisms as yet unidentified from studies on the murine hematopoietic system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have cloned, expressed and purified a hexameric human DNA helicase (hHcsA) from HeLa cells. Sequence analysis demonstrated that the hHcsA has strong sequence homology with DNA helicase genes from Saccharomyces cerevisiae and Caenorhabditis elegans, indicating that this gene appears to be well conserved from yeast to human. The hHcsA gene was cloned and expressed in Escherichia coli and purified to homogeneity. The expressed protein had a subunit molecular mass of 116 kDa and analysis of its native molecular mass by size exclusion chromatography suggested that hHcsA is a hexameric protein. The hHcsA protein had a strong DNA-dependent ATPase activity that was stimulated ≥5-fold by single-stranded DNA (ssDNA). Human hHcsA unwinds duplex DNA and analysis of the polarity of translocation demonstrated that the polarity of DNA unwinding was in a 5′→3′ direction. The helicase activity was stimulated by human and yeast replication protein A, but not significantly by E.coli ssDNA-binding protein. We have analyzed expression levels of the hHcsA gene in HeLa cells during various phases of the cell cycle using in situ hybridization analysis. Our results indicated that the expression of the hHcsA gene, as evidenced from the mRNA levels, is cell cycle-dependent. The maximal level of hHcsA expression was observed in late G1/early S phase, suggesting a possible role for this protein during S phase and in DNA synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structural maintenance of chromosomes (SMC) protein encoded by the fission yeast rad18 gene is involved in several DNA repair processes and has an essential function in DNA replication and mitotic control. It has a heterodimeric partner SMC protein, Spr18, with which it forms the core of a multiprotein complex. We have now isolated the human orthologues of rad18 and spr18 and designated them hSMC6 and hSMC5. Both proteins are about 1100 amino acids in length and are 27–28% identical to their fission yeast orthologues, with much greater identity within their N- and C-terminal globular domains. The hSMC6 and hSMC5 proteins interact to form a tight complex analogous to the yeast Rad18/Spr18 heterodimer. In proliferating human cells the proteins are bound to both chromatin and the nucleoskeleton. In addition, we have detected a phosphorylated form of hSMC6 that localizes to interchromatin granule clusters. Both the total level of hSMC6 and its phosphorylated form remain constant through the cell cycle. Both hSMC5 and hSMC6 proteins are expressed at extremely high levels in the testis and associate with the sex chromosomes in the late stages of meiotic prophase, suggesting a possible role for these proteins in meiosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We identified a novel human homologue of the rat FE65 gene, hFE65L, by screening the cytoplasmic domain of beta-amyloid precursor protein (beta PP) with the "interaction trap." The cytoplasmic domains of the beta PP homologues, APLP1 and APLP2 (amyloid precursor-like proteins), were also tested for interaction with hFE65L. APLP2, but not APLP1, was found to interact with hFE65L. We confirmed these interactions in vivo by successfully coimmunoprecipatating endogenous beta PP and APLP2 from mammalian cells overexpressing a hemagglutinin-tagged fusion of the C-terminal region of hFE65L. We report the existence of a human FE65 gene family and evidence supporting specific interactions between members of the beta PP and FE65 protein families. Sequence analysis of the FE65 human gene family reveals the presence of two phosphotyrosine interaction (PI) domains. Our data show that a single PI domain is sufficient for binding of hFE65L to the cytoplasmic domain of beta PP and APLP2. The PI domain of the protein, Shc, is known to interact with the NPXYp motif found in the cytoplasmic domain of a number of different growth factor receptors. Thus, it is likely that the PI domains present in the C-terminal moiety of the hFE65L protein bind the NPXY motif located in the cytoplasmic domain of beta PP and APLP2.