962 resultados para Nonlinear programming problem
Resumo:
The paper presents a constructive heuristic algorithm (CHA) for solving directly the long-term transmission-network-expansion-planning (LTTNEP) problem using the DC model. The LTTNEP is a very complex mixed-integer nonlinear-programming problem and presents a combinatorial growth in the search space. The CHA is used to find a solution for the LTTNEP problem of good quality. A sensitivity index is used in each step of the CHA to add circuits to the system. This sensitivity index is obtained by solving the relaxed problem of LTTNEP, i.e. considering the number of circuits to be added as a continuous variable. The relaxed problem is a large and complex nonlinear-programming problem and was solved through the interior-point method (IPM). Tests were performed using Garver's system, the modified IEEE 24-Bus system and the Southern Brazilian reduced system. The results presented show the good performance of IPM inside the CHA.
Resumo:
Finding the optimal value for a problem is usual in many areas of knowledge where in many cases it is needed to solve Nonlinear Optimization Problems. For some of those problems it is not possible to determine the expression for its objective function and/or its constraints, they are the result of experimental procedures, might be non-smooth, among other reasons. To solve such problems it was implemented an API contained methods to solve both constrained and unconstrained problems. This API was developed to be used either locally on the computer where the application is being executed or remotely on a server. To obtain the maximum flexibility both from the programmers’ and users’ points of view, problems can be defined as a Java class (because this API was developed in Java) or as a simple text input that is sent to the API. For this last one to be possible it was also implemented on the API an expression evaluator. One of the drawbacks of this expression evaluator is that it is slower than the Java native code. In this paper it is presented a solution that combines both options: the problem can be expressed at run-time as a string of chars that are converted to Java code, compiled and loaded dynamically. To wide the target audience of the API, this new expression evaluator is also compatible with the AMPL format.
Resumo:
The optimized allocation of protective devices in strategic points of the circuit improves the quality of the energy supply and the system reliability index. This paper presents a nonlinear integer programming (NLIP) model with binary variables, to deal with the problem of protective device allocation in the main feeder and all branches of an overhead distribution circuit, to improve the reliability index and to provide customers with service of high quality and reliability. The constraints considered in the problem take into account technical and economical limitations, such as coordination problems of serial protective devices, available equipment, the importance of the feeder and the circuit topology. The use of genetic algorithms (GAs) is proposed to solve this problem, using a binary representation that does (1) or does not (0) show allocation of protective devices (reclosers, sectionalizers and fuses) in predefined points of the circuit. Results are presented for a real circuit (134 busses), with the possibility of protective device allocation in 29 points. Also the ability of the algorithm in finding good solutions while improving significantly the indicators of reliability is shown. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Process systems design, operation and synthesis problems under uncertainty can readily be formulated as two-stage stochastic mixed-integer linear and nonlinear (nonconvex) programming (MILP and MINLP) problems. These problems, with a scenario based formulation, lead to large-scale MILPs/MINLPs that are well structured. The first part of the thesis proposes a new finitely convergent cross decomposition method (CD), where Benders decomposition (BD) and Dantzig-Wolfe decomposition (DWD) are combined in a unified framework to improve the solution of scenario based two-stage stochastic MILPs. This method alternates between DWD iterations and BD iterations, where DWD restricted master problems and BD primal problems yield a sequence of upper bounds, and BD relaxed master problems yield a sequence of lower bounds. A variant of CD, which includes multiple columns per iteration of DW restricted master problem and multiple cuts per iteration of BD relaxed master problem, called multicolumn-multicut CD is then developed to improve solution time. Finally, an extended cross decomposition method (ECD) for solving two-stage stochastic programs with risk constraints is proposed. In this approach, a CD approach at the first level and DWD at a second level is used to solve the original problem to optimality. ECD has a computational advantage over a bilevel decomposition strategy or solving the monolith problem using an MILP solver. The second part of the thesis develops a joint decomposition approach combining Lagrangian decomposition (LD) and generalized Benders decomposition (GBD), to efficiently solve stochastic mixed-integer nonlinear nonconvex programming problems to global optimality, without the need for explicit branch and bound search. In this approach, LD subproblems and GBD subproblems are systematically solved in a single framework. The relaxed master problem obtained from the reformulation of the original problem, is solved only when necessary. A convexification of the relaxed master problem and a domain reduction procedure are integrated into the decomposition framework to improve solution efficiency. Using case studies taken from renewable resource and fossil-fuel based application in process systems engineering, it can be seen that these novel decomposition approaches have significant benefit over classical decomposition methods and state-of-the-art MILP/MINLP global optimization solvers.
Resumo:
We investigate the solvability of the Neumann problem (1.1) involving a critical Sobolev exponent. In the first part of this work it is assumed that the coeffcients Q and h are at least continuous. Moreover Q is positive on overline Omega and lambda > 0 is a parameter. We examine the common effect of the mean curvature and the shape of the graphs of the coeffcients Q and h on the existence of low energy solutions. In the second part of this work we consider the same problem with Q replaced by - Q. In this case the problem can be supercritical and the existence results depend on integrability conditions on Q and h.
Resumo:
A new iterative algorithm based on the inexact-restoration (IR) approach combined with the filter strategy to solve nonlinear constrained optimization problems is presented. The high level algorithm is suggested by Gonzaga et al. (SIAM J. Optim. 14:646–669, 2003) but not yet implement—the internal algorithms are not proposed. The filter, a new concept introduced by Fletcher and Leyffer (Math. Program. Ser. A 91:239–269, 2002), replaces the merit function avoiding the penalty parameter estimation and the difficulties related to the nondifferentiability. In the IR approach two independent phases are performed in each iteration, the feasibility and the optimality phases. The line search filter is combined with the first one phase to generate a “more feasible” point, and then it is used in the optimality phase to reach an “optimal” point. Numerical experiences with a collection of AMPL problems and a performance comparison with IPOPT are provided.
Resumo:
This paper illustrates how nonlinear programming and simulation tools, which are available in packages such as MATLAB and SIMULINK, can easily be used to solve optimal control problems with state- and/or input-dependent inequality constraints. The method presented is illustrated with a model of a single-link manipulator. The method is suitable to be taught to advanced undergraduate and Master's level students in control engineering.
Resumo:
This paper describes the first phase of a project attempting to construct an efficient general-purpose nonlinear optimizer using an augmented Lagrangian outer loop with a relative error criterion, and an inner loop employing a state-of-the art conjugate gradient solver. The outer loop can also employ double regularized proximal kernels, a fairly recent theoretical development that leads to fully smooth subproblems. We first enhance the existing theory to show that our approach is globally convergent in both the primal and dual spaces when applied to convex problems. We then present an extensive computational evaluation using the CUTE test set, showing that some aspects of our approach are promising, but some are not. These conclusions in turn lead to additional computational experiments suggesting where to next focus our theoretical and computational efforts.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)