940 resultados para New Mexico
Resumo:
Detailed mineralogical studies of the matrix and fracture-fill materials of a large number of samples from the Rustler Formation have been carried out using x-ray diffraction, high-resolution transmission electron microscopy, electron microprobe analysis, x-ray fluorescence, and atomic absorption spectrophotometry. These analyses indicate the presence of four clay minerals: interstratified chlorite/saponite, illite, chlorite, and serpentine. Corrensite (regularly stratified chlorite/saponite) is the dominant clay mineral in samples from the Culebra dolomite and two shale layers of the lower unnamed member of the Rustler Formation. Within other layers of the Rustler Formation, disordered mixed chlorite/saponite is usually the most abundant clay mineral. Studies of the morphology and composition of clay crystallites suggest that the corrensite was formed by the alteration of detrital dioctahedral smectite in magnesium-rich pore fluids during early diagenesis of the Rustler Formation. This study provides initial estimates of the abundance and nature of the clay minerals in the Culebra dolomite in the vicinity of the Waste Isolation Pilot Plant.
Resumo:
Empire is central to U.S. history. When we see the U.S. projecting its influence on a global scale in today s world it is important to understand that U.S. empire has a long history. This dissertation offers a case study of colonialism and U.S. empire by discussing the social worlds, labor regimes, and culture of the U.S. Army during the conquest of southern Arizona and New Mexico (1866-1886). It highlights some of the defining principles, mentalities, and characteristics of U.S. imperialism and shows how U.S. forces have in years past constructed their power and represented themselves, their missions, and the places and peoples that faced U.S. imperialism/colonialism. Using insights from postcolonial studies and whiteness studies, this work balances its attention between discursive representations (army stories) and social experience (army actions), pays attention to silences in the process of historical production, and focuses on collective group mentalities and identities. In the end the army experience reveals an empire in denial constructed on the rule of difference and marked by frustration. White officers, their wives, and the white enlisted men not only wanted the monopoly of violence for the U.S. regime but also colonial (mental/cultural) authority and power, and constructed their identity, authority, and power in discourse and in the social contexts of the everyday through difference. Engaged in warfare against the Apaches, they did not recognize their actions as harmful or acknowledge the U.S. invasion as the bloody colonial conquest it was. White army personnel painted themselves and the army as liberators, represented colonial peoples as racial inferiors, approached colonial terrain in terms of struggle, and claimed that the region was a terrible periphery with little value before the arrival of white civilization. Officers and wives also wanted to place themselves at the top of colonial hierarchies as the refined and respectable class who led the regeneration of the colony by example: they tried to turn army villages into islands of civilization and made journeys, leisure, and domestic life to showcase their class sensibilities and level of sophistication. Often, however, their efforts failed, resulting in frustration and bitterness. Many blamed the colony and its peoples for their failures. The army itself was divided by race and class. All soldiers were treated as laborers unfit for self-government. White enlisted men, frustrated by their failures in colonial warfare and by constant manual labor, constructed worlds of resistance, whereas indigenous soldiers sought to negotiate the effects of colonialism by working in the army. As colonized labor their position was defined by tension between integration and exclusion and between freedom and colonial control.
Resumo:
Sediments deposited in late Pleistocene Lake Estancia, central New Mexico, contain a paleoclimatic record that includes the last glacial maximum and deglacial episode. Stratigraphic reconstruction of an interval representing the highstand of the lake that occurred during the last glacial maximum reveals ~2000-, ~600-, and ~200-year oscillations in lake level and climate. Shifting position of the polar jetstream in response to expansion and contraction of the North American ice sheet may be partly responsible for the millenial-scale changes in Lake Estancia but probably does not explain the centennial-scale oscillations.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Pluvial Lake Estancia in central New Mexico experienced large and rapid fluctuations in surface area and elevation during the build-up to and termination of the last glacial maximum (LGM). Due to continuous groundwater discharge, a minimum pool covering about 400 square kilometers was maintained in the central basin until about 12,000 years ago, ensuring a continuous depositional sequence even during low stands of the lake. ... The sensitive response to fluctuations in climate by several independent proxies at Estancia show that transport of Pacific moisture over western North America changed dramatically during the last Ice Age, perhaps comparable to the large and rapid changes in climate documented from high-latitude ice and North Atlantic marine sediments for the LCM and its transitions.
Resumo:
EXTRACT (SEE PDF FOR FULL ABSTRACT): Exposed sediments of Late Pleistocene Lake Estancia contain a high resolution record of regional climate variability for the period about 12,000 to 32,000 years. A detailed rock-magnetic study is being performed on this well-dated, well-preserved sedimentary sequence to determine how the magnetic signature of sediments responded to regional climate change.
Resumo:
Référence bibliographique : Rol, 59165
Resumo:
Owing to the fact that low-Mg calcite fossil shells are so important in paleoceanographic research, 249 brachiopod, cement and matrix specimens from two neighboring localities (Jemez Springs and Battleship Rock), of the Upper Pennsylvanian Madera Formation were analyzed. Of which, about 86% of the Madera brachiopods are preserved in their pristine mineralogy, microstructure and geochemistry. Cement and matrix samples, in contrast, have been subjected to complete but variable post-deposition~1 alteration. It is confirmed that the stable isotope data of brachiopods are much better than that of matrix material in defining depositional parameters. Because there is no uniform or constant relationship between the two data bases (e.g., from 0.1 to 3.0%0 for 0180 and from 0.2 to 6.7%0 for 013C in this study), it is not possible to make corrections for the matrix data. Regarding the two stratigraphic sections, elemental and petrographic analyses suggest that Jemez Springs is closer to Penasco Uplift than Battleship Rock. Seawater at Jemez Springs is more aerobic, and the water chemistry is more influenced by continental sources than that at Battleship Rock. In addition, there is a relatively stronger dolomitization in the mid-section of the Battleship Rock. Results further suggest that no significant biogenic fractionation or vital effects occurred during their shell secretion, suggesting that the Madera brachiopods incorporated oxygen and carbon isotopes in equilibrium with the ambient seawater. This conclusion is not only drawn from the temporal and spatial analyses, but also supported by brachiopod inter-generic comparison (Composita and Neospirifer) and statistical analysis ( t-test).
Resumo:
The stable oxygen and carbon isotopic composition of caliche in fluvial and supratidal rocks of the Abo Formation (Permian), south-central New Mexico, is controlled by palecoclimate and depositional environment. Fluvial caliche consists of low-Mg calcite nodules and vertically oriented tubules that display stage II texture. Micrite matrix support, brecciation, ooids/pisoliths, aveolar-septal texture, and peloids are common in the fluvial caliche and, along with red color and slickensides in the host shale, indicate pedogenesis in a well-oxidized vadose zone. In contrast, periodic waterlogging of the supratidal paleosols, probably due to high water table, is indicated by drab colors, carbonaceous flecks, horizontal rhizoliths, and the paucity of vadose textures in the stage II caliche nodules.Stable oxygen isotopes are similar in the fluvial and supratidal caliches and range from 21.6 to 30.5 parts per thousand (SMOW). The data exhibit a crude bimodality and delta-O-18 enrichment with a decrease in age (higher in the section). Consideration of these data in the context of delta-temperature relations suggests that 1) surface waters responsible for caliche formation increased in delta-O-18 (from roughly -8 to + 1 parts per thousand) over the 18 m.y. time interval that separated the lowest stratigraphic nodule horizon from the highest, 2) the increasing delta-O-18 values also reflect a warming trend (approximately 15-degrees to nearly 30-degrees-C) in the mean monthly temperature over this same time period, with perhaps an associated increase in Permian ocean temperatures, and 3) the significant variation in delta-O-18 from oldest to youngest caliche was probably enhanced by the amount effect, such that as the temperature increased, the amount of precipitation decreased, resulting in high delta-O-18 values.Caliches in the Abo are enriched in heavy carbon (-7.2 to -1.5 part per thousand PDB) compared to that of soil carbonate derived exclusively from C3 plants (-12 part per thousand PDB), and the supratidal caliches contain somewhat heavier carbon compared to the fluvial caliche. The delta-C-13 values for both environments increase with a decrease in caliche age. These results indicate that as the temperature increased and rainfall decreased with time, the level of C3 plant productivity apparently declined, allowing a greater influx of atmospheric CO2 into the soil. This can only occur when soil respiration rates are quite low or at very shallow depths (less than 10 cm), or both. Atmospheric CO2 seems to have invaded the supratidal soils to a somewhat greater extent than the fluvial soils.
Resumo:
An outstanding problem in understanding the late Proterozoic tectonic assembly of the southwest is identifying the tectonic setting associated with regional metamorphism at 1.4 Ga. Both isobaric heating and cooling, and counter-clockwise looping PT paths are proposed for this time. We present a study of the Proterozoic metamorphic and deformation history of the Cerro Colorado area, southern Tusas Mountains, New Mexico, which shows that the metamorphism in this area records near-isothermal decompression from 6 to 4 kbar at ca. 1.4 Ga. We do not see evidence for isobaric heating at this time. Decompression from peak pressures is recorded by the reaction Ms + Grt = St + Bt, with a negative slope in PT space; the reaction Ms + Grt = Sil + Bt, which is nearly horizontal in PT space; and partial to total pseudomorphing of kyanite by sillimanite during the main phase of deformation. The clearest reaction texture indicating decompression near peak metamorphic temperature is the replacement of garnet by clots of sillimanite, which are surrounded by halos of biotite. The sillimanite clots, most without relict garnet in the cores and with highly variable aspect ratios, are aligned. They define a lineation that formed with the dominant foliation. An inverted metamorphic gradient is locally defined by sillimanite-garnet schists (625 degrees C) structurally above staurolite-garnet schists (550 degrees C) and implies ductile thrusting during the main phase of deformation. The exhumation that led to the recorded decompression was likely in response to crustal thickening due to ductile thrusting and subsequent denudation.
Resumo:
Detrital zircon and igneous zircon U-Pb ages are reported from Proterozoic metamorphic rocks in northern New Mexico. These data give new insight into the provenance and depositional age of a >3-km-thick metasedimentary succession and help resolve the timing of orogenesis within an area of overlapping accretionary orogens and thermal events related to the Proterozoic tectonic evolution of southwest Laurentia. Three samples from the Paleoproterozoic Vadito Group yield narrow, unimodal detrital zircon age spectra with peak ages near 1710 Ma. Igneous rocks that intrude the Vadito Group include the Cerro Alto metadacite, the Picuris Pueblo granite, and the Penasco quartz monzonite and yield crystallization ages of 1710 +/- 10 Ma, 1699 +/- 3 Ma, and 1450 +/- 10 Ma, respectively. Within the overlying Hondo Group, a metamorphosed tuff layer from the Pilar Formation yields an age of 1488 +/- 6 Ma and represents the first direct depositional age constraint on any part of the Proterozoic metasedimentary succession in northern New Mexico. Detrital zircon from the overlying Piedra Lumbre Formation yield a minimum age peak of 1475 Ma, and similar to 60 grains (similar to 25%) yield ages between 1500 Ma and 1600 Ma, possibly representing non-Laurentian detritus originating from Australia and/or Antarctica. Detrital zircons from the basal metaconglomerate and the middle quartzite member of the Marquenas Formation yield minimum age peaks of 1472 Ma and 1471 Ma, consistent with earlier results. We interpret the onset of ca. 1490-1450 Ma deposition followed by tectonic burial, regional Al2SiO5 triple-point metamorphism, and ductile deformation at depths of 12-18 km to reflect a Mesoproterozoic contractional orogenic event, possibly related to the final suturing of the Mazatzal crustal province to the southern margin of Laurentia. We propose to call this event the Picuris orogeny.