943 resultados para Neurobiological Variability


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Traditional causal modeling of health interventions tends to be linear in nature and lacks multidisciplinarity. Consequently, strategies for exercise prescription in health maintenance are typically group based and focused on the role of a common optimal health status template toward which all individuals should aspire. ----- ----- Materials and methods: In this paper, we discuss inherent weaknesses of traditional methods and introduce an approach exercise training based on neurobiological system variability. The significance of neurobiological system variability in differential learning and training was highlighted.----- ----- Results: Our theoretical analysis revealed differential training as a method by which neurobiological system variability could be harnessed to facilitate health benefits of exercise training. It was observed that this approach emphasizes the importance of using individualized programs in rehabilitation and exercise, rather than group-based strategies to exercise prescription.----- ----- Conclusion: Research is needed on potential benefits of differential training as an approach to physical rehabilitation and exercise prescription that could counteract psychological and physical effects of disease and illness in subelite populations. For example, enhancing the complexity and variability of movement patterns in exercise prescription programs might alleviate effects of depression in nonathletic populations and physical effects of repetitive strain injuries experienced by athletes in elite and developing sport programs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A constraints- based framework for understanding processes of movement coordination and control is predicated on a range of theoretical ideas including the work of Bernstein (1967), Gibson (1979), Newell (1986) and Kugler, Kelso & Turvey (1982). Contrary to a normative perspective that focuses on the production of idealized movement patterns to be acquired by children during development and learning (see Alain & Brisson, 1986), this approach formulates the emergence of movement co- ordination as a function of the constraints imposed upon each individual. In this framework, cognitive, perceptual and movement difficulties and disorders are considered to be constraints on the perceptual- motor system, and children’s movements are viewed as emergent functional adaptations to these constraints (Davids et al., 2008; Rosengren, Savelsbergh & van der Kamp, 2003). From this perspective, variability of movement behaviour is not viewed as noise or error to be eradicated during development, but rather, as essentially functional in facilitating the child to satisfy the unique constraints which impinge on his/her developing perceptual- motor and cognitive systems in everyday life (Davids et al., 2008). Recently, it has been reported that functional neurobiological variability is predicated on system degeneracy, an inherent feature of neurobiological systems which facilitates the achievement of task performance goals in a variety of different ways (Glazier & Davids, 2009). Degeneracy refers to the capacity of structurally different components of complex movement systems to achieve different performance outcomes in varying contexts (Tononi et al., 1999; Edelman & Gally, 2001). System degeneracy allows individuals with and without movement disorders to achieve their movement goals by harnessing movement variability during performance. Based on this idea, perceptual- motor disorders can be simply viewed as unique structural and functional system constraints which individuals have to satisfy in interactions with their environments. The aim of this chapter is to elucidate how the interaction of structural and functional organismic, and environmental constraints can be harnessed in a nonlinear pedagogy by individuals with movement disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This chapter elucidates key ideas behind neurocomputational and ecological dynamics and perspectives of understanding the organisation of action in complex neurobiological systems. The need to study the close link between neurobiological systems and their environments (particularly their sensory and movement subsystems and the surrounding energy sources) is advocated. It is proposed how degeneracy in complex neurobiological systems provides the basis for functional variability in organisation of action. In such systems processes of cognition and action facilitate the specific interactions of each performer with particular task and environmental constraints.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The identification of attractors is one of the key tasks in studies of neurobiological coordination from a dynamical systems perspective, with a considerable body of literature resulting from this task. However, with regards to typical movement models investigated, the overwhelming majority of actions studied previously belong to the class of continuous, rhythmical movements. In contrast, very few studies have investigated coordination of discrete movements, particularly multi-articular discrete movements. In the present study, we investigated phase transition behavior in a basketball throwing task where participants were instructed to shoot at the basket from different distances. Adopting the ubiquitous scaling paradigm, throwing distance was manipulated as a candidate control parameter. Using a cluster analysis approach, clear phase transitions between different movement patterns were observed in performance of only two of eight participants. The remaining participants used a single movement pattern and varied it according to throwing distance, thereby exhibiting hysteresis effects. Results suggested that, in movement models involving many biomechanical degrees of freedom in degenerate systems, greater movement variation across individuals is available for exploitation. This observation stands in contrast to movement variation typically observed in studies using more constrained bi-manual movement models. This degenerate system behavior provides new insights and poses fresh challenges to the dynamical systems theoretical approach, requiring further research beyond conventional movement models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inherent indeterminacy of neurobiological systems has been revealed by research on coordination of multiarticular actions. We consider three important issues that these investigations raise for biomechanical measurement and performance modeling. These issues highlight the role of dynamic systems theory as a platform for integration of motor control and biomechanics in exercise and sports science.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: Previous research demonstrating that specific performance outcome goals can be achieved in different ways is functionally significant for springboard divers whose performance environment can vary extensively. This body of work raises questions about the traditional approach of balking (terminating the takeoff) by elite divers aiming to perform only identical, invariant movement patterns during practice. METHOD: A 12-week training program (2 times per day; 6.5 hr per day) was implemented with 4 elite female springboard divers to encourage them to adapt movement patterns under variable takeoff conditions and complete intended dives, rather than balk. RESULTS: Intraindividual analyses revealed small increases in variability in the board-work component of each diver's pretraining and posttraining program reverse-dive takeoffs. No topological differences were observed between movement patterns of dives completed pretraining and posttraining. Differences were noted in the amount of movement variability under different training conditions (evidenced by higher normalized root mean square error indexes posttraining). An increase in the number of completed dives (from 78.91%-86.84% to 95.59%-99.29%) and a decrease in the frequency of balked takeoffs (from 13.16%-19.41% to 0.63%-4.41%) showed that the elite athletes were able to adapt their behaviors during the training program. These findings coincided with greater consistency in the divers' performance during practice as scored by qualified judges. CONCLUSION: Results suggested that on completion of training, athletes were capable of successfully adapting their movement patterns under more varied takeoff conditions to achieve greater consistency and stability of performance outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we examined the impact of weather variability and tides on the transmission of Barmah Forest virus (BFV) disease and developed a weather-based forecasting model for BFV disease in the Gladstone region, Australia. We used seasonal autoregressive integrated moving-average (SARIMA) models to determine the contribution of weather variables to BFV transmission after the time-series data of response and explanatory variables were made stationary through seasonal differencing. We obtained data on the monthly counts of BFV cases, weather variables (e.g., mean minimum and maximum temperature, total rainfall, and mean relative humidity), high and low tides, and the population size in the Gladstone region between January 1992 and December 2001 from the Queensland Department of Health, Australian Bureau of Meteorology, Queensland Department of Transport, and Australian Bureau of Statistics, respectively. The SARIMA model shows that the 5-month moving average of minimum temperature (β = 0.15, p-value < 0.001) was statistically significantly and positively associated with BFV disease, whereas high tide in the current month (β = −1.03, p-value = 0.04) was statistically significantly and inversely associated with it. However, no significant association was found for other variables. These results may be applied to forecast the occurrence of BFV disease and to use public health resources in BFV control and prevention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although previous work in nonlinear dynamics on neurobiological coordination and control has provided valuable insights from studies of single joint movements in humans, researchers have shown increasing interest in coordination of multi-articular actions. Multi-articular movement models have provided valuable insights on neurobiological systems conceptualised as degenerate, adaptive complex systems satisfying the constraints of dynamic environments. In this paper, we overview empirical evidence illustrating the dynamics of adaptive movement behavior in a range of multi-articular actions including kicking, throwing, hitting and balancing. We model the emergence of creativity and the diversity of neurobiological action in the meta-stable region of self organising criticality. We examine the influence on multi-articular actions of decaying and emerging constraints in the context of skill acquisition. We demonstrate how, in this context, transitions between preferred movement patterns exemplify the search for and adaptation of attractor states within the perceptual motor workspace as a function of practice. We conclude by showing how empirical analyses of neurobiological coordination and control have been used to establish a nonlinear pedagogical framework for enhancing acquisition of multi-articular actions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A recent article in the Journal of Science and Medicine in Sport by Chapman et al.1 reported data from an empirical investigation comparing lower extremity joint motions, joint coordination and muscle recruitment in expert and novice cyclists. 3D kinematic and intramuscular electromyographic (EMG) analyses revealed no differences between expert and novice cyclists for normalised joint angles and velocities of the pelvis, hip, knee and ankle. However, significant differences in the strength of sagittal plane kinematics for hip–ankle and knee–ankle joint couplings were reported, with expert cyclists displaying tighter coupling relationships than novice cyclists. Furthermore, significant differences between expert and novice cyclists for all muscle recruitment parameters, except timing of peak EMG amplitude, were also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally, the aquisition of skills and sport movement has been characterised by numerous repetitions of presumed model movement pattern to be acquired by learners. This approach has been questioned by research identifying the presence of individualised movement patterns and the low probability of occurrence of two identical movements within and between individuals. In contrast, the differential learning approach claims advantage for incurring variability in the learning process by adding stochastic perturbations during practice. These ideas are exemplified by data from a high jump experiment which compared the effectiveness of classical and a differential training approach with pre-post test design. Results showed clear advantages for the group with additional stochastic perturbation during the aquisition phase in comparison to classically trained athletes. Analogies to similar phenomenological effects in the neurobiological literature are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecological dynamics characterizes adaptive behavior as an emergent, self-organizing property of interpersonal interactions in complex social systems. The authors conceptualize and investigate constraints on dynamics of decisions and actions in the multiagent system of team sports. They studied coadaptive interpersonal dynamics in rugby union to model potential control parameter and collective variable relations in attacker–defender dyads. A videogrammetry analysis revealed how some agents generated fluctuations by adapting displacement velocity to create phase transitions and destabilize dyadic subsystems near the try line. Agent interpersonal dynamics exhibited characteristics of chaotic attractors and informational constraints of rugby union boxed dyadic systems into a low dimensional attractor. Data suggests that decisions and actions of agents in sports teams may be characterized as emergent, self-organizing properties, governed by laws of dynamical systems at the ecological scale. Further research needs to generalize this conceptual model of adaptive behavior in performance to other multiagent populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the study of complex neurobiological movement systems, measurement indeterminacy has typically been overcome by imposing artificial modelling constraints to reduce the number of unknowns (e.g., reducing all muscle, bone and ligament forces crossing a joint to a single vector). However, this approach prevents human movement scientists from investigating more fully the role, functionality and ubiquity of coordinative structures or functional motor synergies. Advancements in measurement methods and analysis techniques are required if the contribution of individual component parts or degrees of freedom of these task-specific structural units is to be established, thereby effectively solving the indeterminacy problem by reducing the number of unknowns. A further benefit of establishing more of the unknowns is that human movement scientists will be able to gain greater insight into ubiquitous processes of physical self-organising that underpin the formation of coordinative structures and the confluence of organismic, environmental and task constraints that determine the exact morphology of these special-purpose devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION In their target article, Yuri Hanin and Muza Hanina outlined a novel multidisciplinary approach to performance optimisation for sport psychologists called the Identification-Control-Correction (ICC) programme. According to the authors, this empirically-verified, psycho-pedagogical strategy is designed to improve the quality of coaching and consistency of performance in highly skilled athletes and involves a number of steps including: (i) identifying and increasing self-awareness of ‘optimal’ and ‘non-optimal’ movement patterns for individual athletes; (ii) learning to deliberately control the process of task execution; and iii), correcting habitual and random errors and managing radical changes of movement patterns. Although no specific examples were provided, the ICC programme has apparently been successful in enhancing the performance of Olympic-level athletes. In this commentary, we address what we consider to be some important issues arising from the target article. We specifically focus attention on the contentious topic of optimization in neurobiological movement systems, the role of constraints in shaping emergent movement patterns and the functional role of movement variability in producing stable performance outcomes. In our view, the target article and, indeed, the proposed ICC programme, would benefit from a dynamical systems theoretical backdrop rather than the cognitive scientific approach that appears to be advocated. Although Hanin and Hanina made reference to, and attempted to integrate, constructs typically associated with dynamical systems theoretical accounts of motor control and learning (e.g., Bernstein’s problem, movement variability, etc.), these ideas required more detailed elaboration, which we provide in this commentary.