868 resultados para Networks analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Artificial neural networks have been used to analyze a number of engineering problems, including settlement caused by different tunneling methods in various types of ground mass. This paper focuses on settlement over shotcrete- supported tunnels on Sao Paulo subway line 2 (West Extension) that were excavated in Tertiary sediments using the sequential excavation method. The adjusted network is a good tool for predicting settlement above new tunnels to be excavated in similar conditions. The influence of network training parameters on the quality of results is also discussed. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complex networks have been increasingly used in text analysis, including in connection with natural language processing tools, as important text features appear to be captured by the topology and dynamics of the networks. Following previous works that apply complex networks concepts to text quality measurement, summary evaluation, and author characterization, we now focus on machine translation (MT). In this paper we assess the possible representation of texts as complex networks to evaluate cross-linguistic issues inherent in manual and machine translation. We show that different quality translations generated by NIT tools can be distinguished from their manual counterparts by means of metrics such as in-(ID) and out-degrees (OD), clustering coefficient (CC), and shortest paths (SP). For instance, we demonstrate that the average OD in networks of automatic translations consistently exceeds the values obtained for manual ones, and that the CC values of source texts are not preserved for manual translations, but are for good automatic translations. This probably reflects the text rearrangements humans perform during manual translation. We envisage that such findings could lead to better NIT tools and automatic evaluation metrics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods from statistical physics, such as those involving complex networks, have been increasingly used in the quantitative analysis of linguistic phenomena. In this paper, we represented pieces of text with different levels of simplification in co-occurrence networks and found that topological regularity correlated negatively with textual complexity. Furthermore, in less complex texts the distance between concepts, represented as nodes, tended to decrease. The complex networks metrics were treated with multivariate pattern recognition techniques, which allowed us to distinguish between original texts and their simplified versions. For each original text, two simplified versions were generated manually with increasing number of simplification operations. As expected, distinction was easier for the strongly simplified versions, where the most relevant metrics were node strength, shortest paths and diversity. Also, the discrimination of complex texts was improved with higher hierarchical network metrics, thus pointing to the usefulness of considering wider contexts around the concepts. Though the accuracy rate in the distinction was not as high as in methods using deep linguistic knowledge, the complex network approach is still useful for a rapid screening of texts whenever assessing complexity is essential to guarantee accessibility to readers with limited reading ability. Copyright (c) EPLA, 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This morning Dr. Risser will introduce you to the basic ideas of social network analysis. You will learn some history behind the study of social networks. Dr. Risser will introduce you to mathematical measures of social networks including centrality measures and measures of spread and cohesion. You will also learn how to use a computer program to analyze social network data

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Complex Networks analysis turn out to be a very promising field of research, testified by many research projects and works that span different fields. Those analysis have been usually focused on characterize a single aspect of the system and a study that considers many informative axes along with a network evolve is lacking. We propose a new multidimensional analysis that is able to inspect networks in the two most important dimensions, space and time. To achieve this goal, we studied them singularly and investigated how the variation of the constituting parameters drives changes to the network as a whole. By focusing on space dimension, we characterized spatial alteration in terms of abstraction levels. We proposed a novel algorithm that, by applying a fuzziness function, can reconstruct networks under different level of details. We verified that statistical indicators depend strongly on the granularity with which a system is described and on the class of networks. We keep fixed the space axes and we isolated the dynamics behind networks evolution process. We detected new instincts that trigger social networks utilization and spread the adoption of novel communities. We formalized this enhanced social network evolution by adopting special nodes (called sirens) that, thanks to their ability to attract new links, were able to construct efficient connection patterns. We simulated the dynamics of the system by considering three well-known growth models. Applying this framework to real and synthetic networks, we showed that the sirens, even when used for a limited time span, effectively shrink the time needed to get a network in mature state. In order to provide a concrete context of our findings, we formalized the cost of setting up such enhancement and provided the best combinations of system's parameters, such as number of sirens, time span of utilization and attractiveness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this poster we presented our preliminary work on the study of spammer detection and analysis with 50 active honeypot profiles implemented on Weibo.com and QQ.com microblogging networks. We picked out spammers from legitimate users by manually checking every captured user's microblogs content. We built a spammer dataset for each social network community using these spammer accounts and a legitimate user dataset as well. We analyzed several features of the two user classes and made a comparison on these features, which were found to be useful to distinguish spammers from legitimate users. The followings are several initial observations from our analysis on the features of spammers captured on Weibo.com and QQ.com. ¦The following/follower ratio of spammers is usually higher than legitimate users. They tend to follow a large amount of users in order to gain popularity but always have relatively few followers. ¦There exists a big gap between the average numbers of microblogs posted per day from these two classes. On Weibo.com, spammers post quite a lot microblogs every day, which is much more than legitimate users do; while on QQ.com spammers post far less microblogs than legitimate users. This is mainly due to the different strategies taken by spammers on these two platforms. ¦More spammers choose a cautious spam posting pattern. They mix spam microblogs with ordinary ones so that they can avoid the anti-spam mechanisms taken by the service providers. ¦Aggressive spammers are more likely to be detected so they tend to have a shorter life while cautious spammers can live much longer and have a deeper influence on the network. The latter kind of spammers may become the trend of social network spammer. © 2012 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives: Evaluate the production and the research collaborative network on Leishmaniasis in South America. Methods: A bibliometric research was carried out using SCOPUS database. The analysis unit was original research articles published from 2000 to 2011, that dealt with leishmaniasis and that included at least one South American author. The following items were obtained for each article: journal name, language, year of publication, number of authors, institutions, countries, and others variables. Results: 3,174 articles were published, 2,272 of them were original articles. 1,160 different institutional signatures, 58 different countries and 398 scientific journals were identified. Brazil was the country with more articles (60.7%) and Oswaldo Cruz Foundation (FIOCRUZ) had 18% of Brazilian production, which is the South American nucleus of the major scientific network in Leishmaniasis. Conclusions: South American scientific production on Leishmaniasis published in journals indexed in SCOPUS is focused on Brazilian research activity. It is necessary to strengthen the collaboration networks. The first step is to identify the institutions with higher production, in order to perform collaborative research according to the priorities of each country.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Part 19: Knowledge Management in Networks

Relevância:

60.00% 60.00%

Publicador:

Resumo:

During last decades there has been a trend to build collaboration platforms as enablers for groups of enterprises to jointly provide integrated services and products. As a result, the notion of business ecosystem is getting wider acceptance. However, a critical issue that is still open, despite some efforts in this area, is the identification of adequate performance indicators to measure and motivate sustainable collaboration. This work-in-progress addresses this concern, briefly presenting the state of the art of relevant contributing areas such as, collaborative networks, business ecosystems, enterprise performance indicators, social networks analysis, and supply chains. Complementarily, through an assessment of current gaps, the research challenges are identified and an approach for further development is proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By generalizing effective-medium theory to the case of orientationally ordered but positionally disordered two component mixtures, it is shown that the anisotropic dielectric tensor of oxide superconductors can be extracted from microwave measurements on oriented crystallites of YBa2Cu3O7¿x embedded in epoxy. Surprisingly, this technique appears to be the only one which can access the resistivity perpendicular to the copper¿oxide planes in crystallites that are too small for depositing electrodes. This possibility arises in part because the real part of the dielectric constant of oxide superconductors has a large magnitude. The validity of the effective-medium approach for orientationally ordered mixtures is corroborated by simulations on two¿dimensional anisotropic random resistor networks. Analysis of the experimental data suggests that the zero-temperature limit of the finite frequency resistivity does not vanish along the c axis, a result which would simply the existence of states at the Fermi surface, even in the superconducting state

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present paper advocates for the creation of a federated, hybrid database in the cloud, integrating law data from all available public sources in one single open access system - adding, in the process, relevant meta-data to the indexed documents, including the identification of social and semantic entities and the relationships between them, using linked open data techniques and standards such as RDF. Examples of potential benefits and applications of this approach are also provided, including, among others, experiences from of our previous research, in which data integration, graph databases and social and semantic networks analysis were used to identify power relations, litigation dynamics and cross-references patterns both intra and inter-institutionally, covering most of the World international economic courts.