975 resultados para Nantucket Sound
Resumo:
Pt. 2. Ninety-third Congress, second session, on S. 3536, Aug. 13, 1974
Resumo:
This layer is a georeferenced raster image of the untitled, historic nautical chart: [Nantucket Island and the eastern end of Martha's Vineyard] (sheet originally published in 1776). The map is [sheet 14] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:54,000]. This layer is image 2 of 2 total images of the two sheet source map, representing the western portion of the map. Covers the eastern portion of Martha's Vineyard and a portion of Nantucket Sound. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns. Relief is shown by hachures; depths by soundings and shading. Includes sailing notes. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.
Resumo:
This layer is a georeferenced raster image of the untitled, historic nautical chart: [Nantucket Island and the eastern end of Martha's Vineyard] (sheet originally published in 1776). The map is [sheet 13] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:54,000]. This layer is image 1 of 2 total images of the two sheet source map, representing the eastern portion of the map. Cover Nantucket Island, Massachusetts and surroundings. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns. Relief is shown by hachures; depths by soundings and shading. Includes sailing notes. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: A chart of Nantucket shoals, surveyed by Paul Pinkham. Survey data was taken from "the light house on Nantucket Point in 1784." It was published and sold by John Norman, Feb. 10th, 1791. Scale [ca. 1:145,000]. Covers Nantucket Sound, Massachusetts and surrounding land. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This nautical chart shows coastal features such as lighthouses, rocks, shoals, currents, channels, points, coves, harbors, islands, and more. Depths are shown by soundings and shading. Land features include settlements, wind mills, and more. This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
This layer is a georeferenced raster image of the historic paper map entitled: A pilot's chart of Nantukket Shoals, by Captn. Thomas Jones, Jnr., of Falmouth in the county of Barnsable, Apr. 7, 1786. Scale [ca. 1:219,400]. Covers Nantucket Sound, Massachusetts and surrounding land. The image inside the map neatline is georeferenced to the surface of the earth and fit to the Massachusetts State Plane Coordinate System, Mainland Zone (in Feet) (Fipszone 2001). All map collar and inset information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This nautical chart shows coastal features such as lighthouses, rocks, shoals, currents, channels, points, coves, harbors, islands, and more. Depths are shown by soundings and shading. Land features include settlements, wind mills, and more. This layer is part of a selection of digitally scanned and georeferenced historic maps of Massachusetts from the Harvard Map Collection. These maps typically portray both natural and manmade features. The selection represents a range of regions, originators, ground condition dates (1755-1922), scales, and purposes. The digitized selection includes maps of: the state, Massachusetts counties, town surveys, coastal features, real property, parks, cemeteries, railroads, roads, public works projects, etc.
Resumo:
Sound propagation in shallow water is characterized by interaction with the oceans surface, volume, and bottom. In many coastal margin regions, including the Eastern U.S. continental shelf and the coastal seas of China, the bottom is composed of a depositional sandy-silty top layer. Previous measurements of narrow and broadband sound transmission at frequencies from 100 Hz to 1 kHz in these regions are consistent with waveguide calculations based on depth and frequency dependent sound speed, attenuation and density profiles. Theoretical predictions for the frequency dependence of attenuation vary from quadratic for the porous media model of M.A. Biot to linear for various competing models. Results from experiments performed under known conditions with sandy bottoms, however, have agreed with attenuation proportional to f1.84, which is slightly less than the theoretical value of f2 [Zhou and Zhang, J. Acoust. Soc. Am. 117, 2494]. This dissertation presents a reexamination of the fundamental considerations in the Biot derivation and leads to a simplification of the theory that can be coupled with site-specific, depth dependent attenuation and sound speed profiles to explain the observed frequency dependence. Long-range sound transmission measurements in a known waveguide can be used to estimate the site-specific sediment attenuation properties, but the costs and time associated with such at-sea experiments using traditional measurement techniques can be prohibitive. Here a new measurement tool consisting of an autonomous underwater vehicle and a small, low noise, towed hydrophone array was developed and used to obtain accurate long-range sound transmission measurements efficiently and cost effectively. To demonstrate this capability and to determine the modal and intrinsic attenuation characteristics, experiments were conducted in a carefully surveyed area in Nantucket Sound. A best-fit comparison between measured results and calculated results, while varying attenuation parameters, revealed the estimated power law exponent to be 1.87 between 220.5 and 1228 Hz. These results demonstrate the utility of this new cost effective and accurate measurement system. The sound transmission results, when compared with calculations based on the modified Biot theory, are shown to explain the observed frequency dependence.
Resumo:
Cape Wind has proposed a wind farm of 130 turbines on Horseshoe Shoal in the center of Nantucket Sound. A prominent concern about the project is the impact the visibility of the turbines will have on the region's tourism industry and property values. It is feared that their presence will diminish the value of the pristine coastline that has attracted vacationers to Cape Cod for generations. In this project, we assess the extent to which Cape Cod, Martha's Vineyard, and Nantucket will be visually affected by the wind farm. It was completed using a Viewshed Analysis in the GIS program, ArcMap, from the surface, mean, and maximum height of the towers. These Viewsheds were combined to give a comprehensive perspective of which areas are able to see the highest percent of the wind farm. Finally, a weighted land use value was applied to the Viewshed to account for the impact of land use on the ability to see the project. The objective of this analysis is to provide a visual representation of how great an influence the wind farm will in fact have on Cape Cod.
Resumo:
This layer is a georeferenced raster image of the untitled, historic nautical chart: [Coast of New England from Narragansett to Cape Cod] (sheet originally published in 1779). The map is [sheet 5] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:130,000]. This layer is image 1 of 2 total images of the two sheet source map, representing the eastern portion of the map. Covers Nantucket, Nantucket Sound and portions of Cape Cod and Martha's Vineyard, Massachusetts. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns. Relief is shown by hachures; depths by soundings and shading. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.
Resumo:
This layer is a digital raster graphic of the historic 15-minute USGS topographic map of the Muskeget, Massachusetts quadrangle. The survey date (ground condition) of the original paper map is 1887, the edition date is May, 1899 and this map has a reprint date of 1943. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map, including all map collar information. The image inside the map neatline is geo-referenced to the surface of the earth and fit to the Universal Transverse Mercator projection. The horizontal positional accuracy and datum of the DRG matches the accuracy and datum of the source map.
Resumo:
The finite element and boundary element methods are employed in this study to investigate the sound radiation characteristics of a box-type structure. It has been shown [T.R. Lin, J. Pan, Vibration characteristics of a box-type structure, Journal of Vibration and Acoustics, Transactions of ASME 131 (2009) 031004-1–031004-9] that modes of natural vibration of a box-type structure can be classified into six groups according to the symmetry properties of the three panel pairs forming the box. In this paper, we demonstrate that such properties also reveal information about sound radiation effectiveness of each group of modes. The changes of radiation efficiencies and directivity patterns with the wavenumber ratio (the ratio between the acoustic and the plate bending wavenumbers) are examined for typical modes from each group. Similar characteristics of modal radiation efficiencies between a box structure and a corresponding simply supported panel are observed. The change of sound radiation patterns as a function of the wavenumber ratio is also illustrated. It is found that the sound radiation directivity of each box mode can be correlated to that of elementary sound sources (monopole, dipole, etc.) at frequencies well below the critical frequency of the plates of the box. The sound radiation pattern on the box surface also closely related to the vibration amplitude distribution of the box structure at frequencies above the critical frequency. In the medium frequency range, the radiated sound field is dominated by the edge vibration pattern of the box. The radiation efficiency of all box modes reaches a peak at frequencies above the critical frequency, and gradually approaches unity at higher frequencies.
Resumo:
Freeway barriers used to be just great slabs of concrete that lined the road to tr and protect nearby residents from the constant rumble of the traffic. But in recent years, their visual appeal has become as important as their practical purpose with architects and designers clamouring to show off their ideas to the vast traveling public. Melbourne's Craigieburn Bypass is the latest to be recognised for its dual appeal winning the Urban Design Award at the recent Victorian Architecture Awards.
Resumo:
An interpretative methodology for understanding meaning in cinema since the 1950s, auteur analysis is an approach to film studies in which an individual, usually the director, is studied as the author of her or his films. The principal argument of this thesis is that proponents of auteurism have privileged examination of the visual components in a film-maker’s body of work, neglecting the potentially significant role played by sound. The thesis seeks to address this problematic imbalance by interrogating the creative use of sound in the films written and directed by Rolf de Heer, asking the question, “Does his use of sound make Rolf de Heer an aural auteur?” In so far as the term ‘aural’ encompasses everything in the film that is heard by the audience, the analysis seeks to discover if de Heer has, as Peter Wollen suggests of the auteur and her or his directing of the visual components (1968, 1972 and 1998), unconsciously left a detectable aural signature on his films. The thesis delivers an innovative outcome by demonstrating that auteur analysis that goes beyond the mise-en-scène (i.e. visuals) is productive and worthwhile as an interpretive response to film. De Heer’s use of the aural point of view and binaural sound recording, his interest in providing a ‘voice’ for marginalised people, his self-penned song lyrics, his close and early collaboration with composer Graham Tardif and sound designer Jim Currie, his ‘hands-on’ approach to sound recording and sound editing and his predilection for making films about sound are all shown to be examples of de Heer’s aural auteurism. As well as the three published (or accepted for publication) interviews with de Heer, Tardif and Currie, the dissertation consists of seven papers refereed and published (or accepted for publication) in journals and international conference proceedings, a literature review and a unifying essay. The papers presented are close textual analyses of de Heer’s films which, when considered as a whole, support the thesis’ overall argument and serve as a comprehensive auteur analysis, the first such sustained study of his work, and the first with an emphasis on the aural.
Resumo:
The anisotropic pore structure and elasticity of cancellous bone cause wave speeds and attenuation in cancellous bone to vary with angle. Previously published predictions of the variation in wave speed with angle are reviewed. Predictions that allow tortuosity to be angle dependent but assume isotropic elasticity compare well with available data on wave speeds at large angles but less well for small angles near the normal to the trabeculae. Claims for predictions that only include angle-dependence in elasticity are found to be misleading. Audio-frequency data obtained at audio-frequencies in air-filled bone replicas are used to derive an empirical expression for the angle-and porosity-dependence of tortuosity. Predictions that allow for either angle dependent tortuosity or angle dependent elasticity or both are compared with existing data for all angles and porosities.
Resumo:
SoundCipher is a software library written in the Java language that adds important music and sound features to the Processing environment that is widely used by media artists and otherwise has an orientation toward computational graphics. This article introduces the SoundCipher library and its features, describes its influences and design intentions, and positions it within the field of computer music programming tools. SoundCipher enables the rich history of algorithmic music techniques to be accessible within one of today’s most popular media art platforms. It also provides an accessible means for learning to create algorithmic music and sound programs.