982 resultados para NBR, XNBR and SBR


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The current research investigates the possibility of using unmodified and modified nanokaolin, multiwalled carbon nanotube (MWCNT) and graphene as fillers to impart enhancement in mechanical, thermal, and electrical properties to the elastomers. Taking advantage of latex blending method, nanoclay, MWCNT and graphene dispersions, prepared by ultra sound sonication are dispersed in polymer latices. The improvement in material properties indicated better interaction between filler and the polymer.MWCNT and graphene imparted electrical conductivity with simultaneous improvement in mechanical properties. Layered silicates prepared by microwave method also significantly improve the mechanical properties of the nanocomposites. The thesis entitled ‘Studies on the use of Nanokaolin, MWCNT and Graphene in NBR and SBR’ consists of ten chapters. The first chapter is a concise introduction of nanocomposites, nanofillers, elastomeric matrices and applications of polymer nanocomposites. The state-of-art research in elastomer based nanocomposites is also presented. At the end of this chapter the main objectives of the work are mentioned. Chapter 2 outlines the specifications of various materials used, details of experimental techniques employed for preparing and characterizing nanocomposites. Chapter3 includes characterization of the nanofillers, optimsation of cure time of latex based composites and the methods used for the preparation of latex based and dry rubber based nanocomposites. Chapter4 presents the reinforcing effect of the nanofillers in XNBR latex and the characterization of the nanocomposites. Chapter5 comprises the effect of nanofillers on the properties of SBR latex and their characterization Chapter 6 deals with the study of cure characteristics, mechanical and thermal properties and the characterization of NBR based nanocomposites. Chapter7 is the microwave studies of MWCNT and graphene filled elastomeric nanocomposites. Chapter 8 gives details of the preparation of layered silicates, their characterization and use in different elastomeric matrices. Chapter 9 is the study of mechanical properties of nanoclay incorporated nitrile gloves .Chapter 10 presents the summary and conclusions of the investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Precipitated silica is the most promising alternative for carbon black in tyre tread compounds due to its improved performance in terms of rolling resistance and wet grip.But its poor processability is a serious limitation to its commercial application.This thesis suggests a novel route for the incorporation of silica in rubbers,i.e.,precipitation of silica in rubber latex followed by coagulation of the latex to get rubber-silica maseterbatch.Composites with in situ precipitated silica showed improved processability and mechanical properties,when compared to conventional silica composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: Rubber seed oil was used as a multipurpose ingredient in natural rubber (NR) and styrene butadiene rubber (SBR) compounds. The study shows that the oil, when substituted for conventional plasticiser, imparts excellent mechanical properties to NR and SBR vulcanizates. Further, it also improves aging resistance, reduces cure time, increases abrasion resistance and flex resistance, and reduces blooming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Department of Applied Chemistry, Cochin University of Science and Technology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study is undertaken on PVC blends because of their all-round importance-One of the most prominent needs of PVC in application end-use is permanent plasticizationlo. Butadiene-acrylonitrile rubber (NBR) has been utilized as permanent plasticizer for PVC since the 1940s for wire and cable insulation, food contact, and pondliners used for oil containment23'24. Also plasticized PVC has been added to vulcanizable nitrile rubber, to yield improved ozone, thermal ageing, and chemical resistance resulting in applications including fuel hose covers, gaskets, conveyor belt covers, and printing roll covers. This blend is miscible in the range of 23 to 45 per cent acrylonitrile content in the butadiene-acrylqnitrile copolymerzs. The first phase of the study was directed towards modification blends. These blends, in addition to the polymers, require a host of additives like curatives for the NBR phase and stabilizers for the PVC phase26of the existing PVC blends, especially NBR/PVC. The second phase of the study was directed towards the development of novel PVC based blends. Chloroprene rubber (polychloroprene) (CR) is structurally similar to PVC and hence is likely to form successful blends with PVC32.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the effect of silica fume and styrene-butadiene latex (SBR) on the microstructure of the interfacial transition zone (ITZ) between Portland cement paste and aggregates (basalt). Scanning electron microscope (SEM) equipped with energy dispersive X-ray analysis system (EDX) was used to determine the ITZ thickness. In the plain concrete a marked ITZ around the aggregate particles (55 mu m) was observed, while in concretes with silica fume or latex SBR the ITZ was less pronounced (35-40 mu m). However, better results were observed in concretes with silica fume and latex SBR (20-25 mu m). (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis describes utilisation of reclaimed rubber, Whole Tyre Reclaim (WTR) produced from bio non- degradable solid pollutant scrap and used tyres. In this study an attempt has made to optimize the substitution of virgin rubber with WTR in both natural and synthetic rubber compounds without seriously compromising the important mechanical properties. The WTR is used as potent source of rubber hydrocarbon and carbon black filler. Apart from natural rubber (NR), Butadiene rubber (BR), Styrene butadiene rubber (SBR), Acrylonitrile butadiene rubber (NBR) and Chloroprene rubber (CR) were selected for study, being the most widely used general purpose and specialty rubbers. The compatibility problem was addressed by functionalisation of WTR with maleic anhydride and by using a coupling agent Si69.The blends were systematically evaluated with respect to various mechanical properties. The thermogravimetric analyses were also carried out to evaluate the thermal stability of the blends.Mechanical properties of the blends were property and matrix dependant. Presence of reinforcing carbon black filler and curatives in the reclaimed rubber improved the mechanical properties with the exception of some of the elastic properties like heat build up, resilience, compression set. When WTR was blended with natural rubber and synthetic rubbers, as the concentration of the low molecular weight, depolymerised WfR was increased above 46-weight percent, the properties deteriorates.When WTR was blended with crystallizing rubbers such as natural rubber and chloroprene rubber, properties like tensile strength, ultimate elongation were decreased in presence of WTR. Where as in the case of blends of WTR with non-crystallizing rubbers reinforcement effect was more prominent.The effect of functionalisation and coupling agent was studied in three matrices having different levels of polarity(NBR, CR and SBR).The grafting of maleic anhydride on to WTR definitely improved the properties of its blends with NBR, CR and SBR, the effect being prominent in Chloroprene rubber.Improvement in properties of these blends could also achieved by using a coupling agent Si69. With this there is apparent plasticizing effect at higher loading of the coupling agent. The optimum concentration of Si69 was 1 phr for improved properties, though the improvements are not as significant as in the case of maleic anhydride grafting.Thermal stability of the blend was increased by using silane-coupling agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoscale silica was synthesized by precipitation method using sodium silicate and dilute hydrochloric acid under controlled conditions. The synthesized silica was characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), BET adsorption and X-Ray Diffraction (XRD). The particle size of silica was calculated to be 13 nm from the XRD results and the surface area was found to be 295 m2/g by BET method. The performance of this synthesized nanosilica as a reinforcing filler in natural rubber (NR) compound was investigated. The commercial silica was used as the reference material. Nanosilica was found to be effective reinforcing filler in natural rubber compound. Filler-matrix interaction was better for nanosilica than the commercial silica. The synthesized nanosilica was used in place of conventional silica in HRH (hexamethylene tetramine, resorcinol and silica) bonding system for natural rubber and styrene butadiene rubber / Nylon 6 short fiber composites. The efficiency of HRH bonding system based on nanosilica was better. Nanosilica was also used as reinforcing filler in rubber / Nylon 6 short fiber hybrid composite. The cure, mechanical, ageing, thermal and dynamic mechanical properties of nanosilica / Nylon 6 short fiber / elastomeric hybrid composites were studied in detail. The matrices used were natural rubber (NR), nitrile rubber (NBR), styrene butadiene rubber (SBR) and chloroprene rubber (CR). Fiber loading was varied from 0 to 30 parts per hundred rubber (phr) and silica loading was varied from 0 to 9 phr. Hexa:Resorcinol:Silica (HRH) ratio was maintained as 2:2:1. HRH loading was adjusted to 16% of the fiber loading. Minimum torque, maximum torque and cure time increased with silica loading. Cure rate increased with fiber loading and decreased with silica content. The hybrid composites showed improved mechanical properties in the presence of nanosilica. Tensile strength showed a dip at 10 phr fiber loading in the case of NR and CR while it continuously increased with fiber loading in the case of NBR and SBR. The nanosilica improved the tensile strength, modulus and tear strength better than the conventional silica. Abrasion resistance and hardness were also better for the nanosilica composites. Resilience and compression set were adversely affected. Hybrid composites showed anisotropy in mechanical properties. Retention in ageing improved with fiber loading and was better for nanosilica-filled hybrid composites. The nanosilica also improved the thermal stability of the hybrid composite better than the commercial silica. All the composites underwent two-step thermal degradation. Kinetic studies showed that the degradation of all the elastomeric composites followed a first-order reaction. Dynamic mechanical analysis revealed that storage modulus (E’) and loss modulus (E”) increased with nanosiica content, fiber loading and frequency for all the composites, independent of the matrix. The highest rate of increase was registered for NBR rubber.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the first part of the study we probed the effectiveness of rice bran oil as a multipurpose compounding ingredient for nitrile (NBR) and chloroprene (CR) rubbers. This oil has already been successfully employed in the compounding of NR and SBR in this laboratory.In this context we thought it worthwhile to try this oil in the polar rubbers viz, NBR and CR also. The principle of like dissolves like as applicable to solvents is equally applicable while selecting a plasticiser, elastomer combination. Because of the compatibility considerations polar plasticisers are preferred for polar rubbers like NBR and CR. Although plasticisation is a physical phenomenon and no chemical reaction is involved, the chemical structure of plasticisers determines how much physical attraction there is between the rubber and the plasticiser. In this context it is interesting to note that the various fatty acids present in rice bran oil have a long paraffinic chain, characteristic of waxes, with an acid group at the end of the molecule. The paraffinic end of the molecule contributes lubricating effects and limits compatibility whereas the acid end group contributes some polarity and is also chemically reactive. Because of absorption of acid group on the surface of pigments, these acids will have active pigment wetting characteristics also. These factors justifies the role of rice bran oil as a co-activator and lubricating agent for NBR and CR. In fact in our study we successfully replaced stearic acid as co-activator and aromatic oillDOP as processing aid for CR and NBR with rice bran oil.This part of the study has got special significance in the fact that rubber industry now heavily depends on petroleum industry for process oils. The conventional process oils like aromatic, naphthenic and paraffinic oils are increasingly becoming costlier, as its resources in nature are fast depleting. Moreover aromatic process oils are reported to be carcinogenic because of the presence of higher levels of polycyclic aromatic compounds in these oils.As a result of these factors, a great amount research is going on world over for newer processing aids which are cost effective, nontoxic and performanance wise at par with the conventional ones used in the rubber industry. Trials with vegetable oils in this direction is worth trying.Antioxidants are usually added to the rubber compound to minimise ageing effects from heat, light, oxygen etc. As rice bran oil contains significant amount of tocopherols and oryzanol which are natural antioxidants, we replaced a phenolic antioxidant like styrenated phenol (SP) from the compound recipe of both the rubbers with RBO and ascertained whether this oil could function in the role of antioxidant as well.Preparation and use of epoxidised rice bran oil as plasticiser has already been reported.The crude rice bran oil having an iodine value of 92 was epoxidised in this laboratory using peracetic acid in presence of sulphuric acid as catalyst. The epoxy content of the epoxidised oil was determined volumetrically by treating a known weight of the oil with excess HCI and back titrating the residual HCI with standard alkali solution. The epoxidised oil having an epoxy content of 3.4% was tried in the compounding of NBR and CR as processing aids. And results of these investigations are also included in this chapter. In the second part of the study we tried how RBO/ERBO could perform when used as a processing aid in place of aromatic oil in the compounding of black filled NRCR blends. Elastomers cannot have all the properties required for a particular applications, so it is common practice in rubber industry to blend two elastomers to have desired property for the resulting blend.In this RBO/ERBO was tried as a processing aid for plasticisation, dispersion of fillers, and vulcanisation of black filled NR-CR blends.Aromatic oil was used as a control. The results of our study indicate that these oils could function as a processing aid and when added together with carbon black function as a cure accelerator also.PVC is compatible with nitrile rubber in all proportions, provided NBR has an acrylonitrile content of 25 to 40%. Lower or higher ACN content in NBR makes it incompatible with PVC.PVC is usually blended with NBR at high temperatures. In order to reduce torque during mixing, additional amounts of plasticisers like DOP are added. The plasticiser should be compatible both with PVC and NBR so as to get a homogeneous blend. Epoxidised soyaben oil is reported to have been used in the compounding of PVC as it can perfonn both as an efficient plasticiser and heat stabilizer.At present DOP constitute the largest consumed plasticiser in the PVC compounding. The migration of this plasticiser from food packaging materials made of PVC poses great health hazards as this is harmful to human body. In such a scenario we also thought it worthwhile to see whether DOP could be replaced by rice bran oil in the compounding of NBR-PVC blends Different blends of NBR-PVC were prepared with RBO and were vulcanized using sulphur and conventional accelerators. The various physical and mechanical properties of the vulcanisates were evaluated and compared with those prepared with DOP as the control plasticiser. Epoxidised rice bran oil was also tried as plasticiser for the preparation of NBR-PVC blends. A comparison of the processability and cure characteristics of the different blends prepared with DOP and ERBO showed that ERBO based blends have better processability and lower cure time values. However the elastographic maximum torque values are higher for the DOP based blends. Almost all of the physical properties evaluated are found to be slightly better for the DOP based blends over the ERBO based ones. However a notable feature of the ERBO based blends is the better percentage retention of elongation at break values after ageing over the DOP based blends. The results of these studies using rice bran oil and its epoxidised variety indicated that they could be used as efficient plasticisers in place of DOP and justifies their role as novel, nontoxic, and cheap plasticisers for NBR-PVC blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The distribution of curing agents and fillers in the constituents of an elastomer blend is an important factor which determines the curing behaviour and vulcanizate properties of the blend. The distribution of curatives and fillers largely depends on the nature of elastomers. The curatives tend to migrate preferentially to the rubber of higher unsaturation and/or higher polarity, and reinforcing fillers tend to get distributed in the low viscosity phase, resulting in inferior mechanical properties of the blends. The thesis suggests several methods for improving mechanical properties of blends like NBR/butyl, NR/butyl, NBR/EPDM and NR/.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: High local control rates are achieved in stage I lung cancer using stereotactic ablative radiotherapy. Target delineation is commonly based on four-dimensional computed tomography (CT) scans. Target volumes defined by positron emission tomography/computed tomography (PET/CT) are compared with those defined by four-dimensional CT and conventional ('three-dimensional') F-fluorodeoxyglucose (F-FDG) PET/CT. Materials and methods: For 16 stage I non-small cell lung cancer tumours, six approaches for deriving PET target volumes were evaluated: manual contouring, standardised uptake value (SUV) absolute threshold of 2.5, 35% of maximum SUV (35%SUV), 41% of SUV (41%SUV) and two different source to background ratio techniques (SBR-1 and SBR-2). PET-derived target volumes were compared with the internal target volume (ITV) from the modified maximum intensity projection (MIP ITV). Volumetric and positional correlation was assessed using the Dice similarity coefficient (DSC). Results: PET-based target volumes did not correspond to four-dimensional CT-based target volumes. The mean DSC relative to MIP ITV were: PET manual = 0.64, SUV2.5 = 0.64, 35%SUV = 0.63, 41%SUV = 0.57. SBR-1 = 0.52, SBR-2 = 0.49. PET-based target volumes were smaller than corresponding MIP ITVs. Conclusions: Conventional three-dimensional F-FDG PET-derived target volumes for lung stereotactic ablative radiotherapy did not correspond well with those derived from four-dimensional CT, including those in routine clinical use (MIP ITV). Caution is required in using three-dimensional PET for motion encompassing target volume delineation. © 2012 The Royal College of Radiologists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS: High local control rates are achieved in stage I lung cancer using
stereotactic ablative radiotherapy. Target delineation is commonly based on
four-dimensional computed tomography (CT) scans. Target volumes defined by
positron emission tomography/computed tomography (PET/CT) are compared with those defined by four-dimensional CT and conventional ('three-dimensional')
(18)F-fluorodeoxyglucose ((18)F-FDG) PET/CT.

MATERIALS AND METHODS: For 16 stage I non-small cell lung cancer tumours, six
approaches for deriving PET target volumes were evaluated: manual contouring,
standardised uptake value (SUV) absolute threshold of 2.5, 35% of maximum SUV
(35%SUV(MAX)), 41% of SUV(MAX) (41%SUV(MAX)) and two different source to
background ratio techniques (SBR-1 and SBR-2). PET-derived target volumes were compared with the internal target volume (ITV) from the modified maximum
intensity projection (MIP(MOD) ITV). Volumetric and positional correlation was
assessed using the Dice similarity coefficient (DSC).

RESULTS: PET-based target volumes did not correspond to four-dimensional CT-based target volumes. The mean DSC relative to MIP(MOD) ITV were: PET manual = 0.64, SUV2.5 = 0.64, 35%SUV(MAX) = 0.63, 41%SUV(MAX) = 0.57. SBR-1 = 0.52, SBR-2 =0.49. PET-based target volumes were smaller than corresponding MIP ITVs.

CONCLUSIONS: Conventional three-dimensional (18)F-FDG PET-derived target volumes for lung stereotactic ablative radiotherapy did not correspond well with those derived from four-dimensional CT, including those in routine clinical use
(MIP(MOD) ITV). Caution is required in using three-dimensional PET for motion
encompassing target volume delineation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis deals with the development of short nylon fiber-reclaimed rubber/elastomer composites. Three rubbers viz, natural rubber, acrylonitrile butadiene rubber and styrene butadiene rubber were selected and were partially replaced with reclaimed rubber. The blend ratio was optimized with respect to cure characteristics and mechanical properties. Reclaimed rubber replaced 40 parts of NR and SBR and 20 parts of NBR without much affecting the properties. These blends were then reinforced with short nylon fibers. The mechanical properties of the composites were studied in detail. In all the cases the tensile strength, tear strength and the abrasion resistance increased with increase in fiber content. In the case of NRlreclaimed rubber blends, the tensile strength-fiberloading relationship was non-linear where as in the case of NBRlreclaimed rubber blends and SBRlreclaimed rubber blends the tensile strength-fiber loading relationship was linear. All the composites showed anisotropy in mechanical properties. The effect of bonding system on the composite properties was also studied with respect to cure characteristics and mechanical properties. For this, a 20 phr fiber loaded reclaimed rubber/elastomer composites were selected and the effect of MDI/PEG resin system was studied. The resin used was 5 phr and the resin ratios used were 0.67: I, 1:1, 1.5:1 and 2:1. The bonding system improved the tensile strength, tear strength and abrasion resistance. The best results are with SBRlreclaimed rubber-short nylon fiber composites. The optimized resin ratio was 1:1 MDI/PEG for all the composites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis describes the development and evaluation of epoxy resin as interfacial bonding agent for short Nylon-6 fiber elastomer composites. Epoxy resin is well known for its adhesive property. The potential use of it as interfacial bonding agent in short fiber composite is not explored yet. Three rubbers viz., acrylonitrile butadiene rubber (NBR), Neoprene rubber (CR) and styrene butadiene rubber (SBR) were selected and different fiber loading were tried. The resin concentration was optimized for each fiber loading with respect to cure characteristics and mechanical properties. Rheological characteristics and thermal degradation of the composites containing different fiber loading and different resin concentrations were studied in detail to find the effect of epoxy resin bonding system. The mechanical properties were studied in detail. The short Nylon -6 fiber improved most of the mechanical properties of all the three rubbers. Tensile strength showed a dip at 10 phr fiber loading in the case of CR while it was continuously increased with fiber loading in the case of NBR and SBR. All the composites showed anisotropy in mechanical properties. The epoxy resin is an effective bonding agent for short Nylon -6 fiber reinforced NBR and CR composites. Epoxy resin improved tensile strength, abrasion resistance and modulus of these composites. SEM studies confirmed the improved bonding of fiber and matrix in the presence of epoxy bonding agent. Epoxy resin was not effective as bonding agent in the case of short Nylon fiber- SBR composite. From the rheological studies of the composites with and without bonding agent it was observed that all the composite exhibited pseudoplasticity, which decreased with temperature. At higher shear rates all the mixes showed plug flow. SEM pictures showed that maximum orientation of fibers occured at a shear rate, just before the onset of plug flow. The presence of fiber reduced the temperature sensitivity of the flow at a given shear rate. Die swell was reduced in the presence of fiber. Shear viscosity of the composite was increased in the presence of resin. Die swell was increased in the presence of epoxy resin for composites at all shear rates. The thermal degradation of NBR and SBR composites with and without bonding agent followed single step degradation pattern. Thermal stability of the composites was improved in the presence of bonding agent. The degradation of virgin elastomer and the composites followed first order kinetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Partículas nanoestruturadas têm sido amplamente utilizadas como carga de reforço em matrizes elastoméricas, sendo substitutos eficazes das cargas convencionais, já consagradas, como o negro de fumo, mica, sílica. Em especial, as argilas têm mostrado grande potencial ao que se refere a melhor dispersão na matriz polimérica, em função de sua elevada razão de aspecto. Dentro do vasto universo de argilominerais, as argilas aniônicas, também conhecidas hidróxido duplo lamelar (HDL), apresentam como vantagem a possibilidade de ser projetada estruturalmente para as mais diversas finalidades, ao se modificar os ânions ou os cátions, ou até mesmo combiná-los na estrutura lamelar. E dentre os métodos existentes para se preparar compósitos a base de elastômero/argila, a co-coagulação do látex, é uma forma bastante eficaz e economicamente viável, uma vez que a borracha obtida após processo de coagulação já contém a carga incorporada. Este trabalho se dedicou a avaliar o processo de co-coagulação do látex de NBR e HDL, visando a obtenção de nanocompósitos. Para tanto HDL de composição Mg/Al-CO3 foi modificado com ânions DS, DBS e ST e foram preparadas suspensões aquosas, utilizando como ferramentas de dispersão ultraturrax e ultrassom de ponteira. As variáveis de processo avaliadas foram tipo e teor de HDL, tempo de mistura látex/suspensão aquosa de HDL, quantidade de coagulante e velocidade de agitação. Por fim, os coágulos obtidos foram formulados para avaliar a influência dos HDL na cinética de vulcanização e também para determinação das propriedades mecânicas convencionais. Os resultados obtidos comprovaram que a metodologia de dispersão de hidrotalcita ao látex nitrílico de modo prévio ao processo de coagulação é uma alternativa viável para a obtenção de nanocompósitos. O uso do ultrassom de ponteira como ferramenta na dispersão aquosa de HDL contribuiu para maior estabilidade da suspensão e o ajuste nos parâmetros do sistema de coagulação, levaram a obtenção de grumos uniformes do ponto de vista macroscópico e microscópico. As micrografias dos coágulos não vulcanizados obtidas por MEV-FEG confirmaram as informações apuradas a partir dos difratogramas de raios-X que apontou a formação de um sistema parcialmente esfoliado, em função da ausência dos picos característicos da hidrotalcita, além de indicarem a coexistência de partículas em dimensões micrométrica a nanométricas em uma mesma estrutura. A composição química do HDL, com a presença de átomos de magnésio e alumínio combinados com grupos hidroxila favoreceu a redução tanto o tempo de indução como de pré-cura. As propriedades mecânicas que se mostraram mais sensíveis ao grau de dispersão da carga foram a dureza, a deformação permanente à compressão (DPC) e o módulo de tração a 300% de deformação (E300), em especial para os compósitos contendo 10% m/m de HDL natural e modificado com estearato. A resistência à chama dos nanocompósitos de NBR-HDL vulcanizados apresentou um ligeiro aumento quando comparados à NBR pura, visto que esta é uma característica própria da hidrotalcita, decorrente da sua composição química