921 resultados para N-ASTERISK RESONANCES
Resumo:
A chiral constituent quark model approach, embodying s- and u-channel exchanges, complemented with a Reggeized treatment for the t channel is presented. A model is obtained allowing data for pi(-)p ->eta n and gamma p ->eta p to be described satisfactorily. For the latter reaction, recently released data by the CLAS and CBELSA/TAPS Collaborations in the system total energy range 1.6 less than or similar to W less than or similar to 2.8 GeV are well reproduced by the inclusion of Reggeized trajectories instead of simple. and. poles. The contribution from "missing" resonances, with masses below 2 GeV, is found to be negligible in the considered processes.
Resumo:
Spatially resolved cathodoluminescence (CL) study of a ZnO nanonail, having thin shank, tapered neck, and hexagonal head sections, is reported. Monochromatic imaging and line scan profiling indicate that the wave guiding and leaking from growth imperfections in addition to the oxygen deficiency variation determine the spatial contrast of CL emissions. Occurrence of resonance peaks at identical wavelengths regardless of CL-excitation spots is inconsistent with the whispering-gallery mode (WGM) resonances of a two-dimensional cavity in the finite difference time domain simulation. However, three dimensioanl cavity simulation produced WGM peaks that are consistent with the experimental spectra, including transverse-electric resonances that are comparable to transverse-magnetic ones.
Resumo:
We present experimental results that demonstrate that the wavelength of the fundamental localised surface plasmon resonance for spherical gold nanoparticles on glass can be predicted using a simple, one line analytical formula derived from the electrostatic eigenmode method. This allows the role of the substrate in lifting mode degeneracies to be determined, and the role of local environment refractive indices on the plasmon resonance to be investigated. The effect of adding silica to the casting solution in minimizing nanopaticle agglomeration is also discussed.
Resumo:
The problem of decaying states and resonances is examined within the framework of scattering theory in a rigged Hilbert space formalism. The stationary free,''in,'' and ''out'' eigenvectors of formal scattering theory, which have a rigorous setting in rigged Hilbert space, are considered to be analytic functions of the energy eigenvalue. The value of these analytic functions at any point of regularity, real or complex, is an eigenvector with eigenvalue equal to the position of the point. The poles of the eigenvector families give origin to other eigenvectors of the Hamiltonian: the singularities of the ''out'' eigenvector family are the same as those of the continued S matrix, so that resonances are seen as eigenvectors of the Hamiltonian with eigenvalue equal to their location in the complex energy plane. Cauchy theorem then provides for expansions in terms of ''complete'' sets of eigenvectors with complex eigenvalues of the Hamiltonian. Applying such expansions to the survival amplitude of a decaying state, one finds that resonances give discrete contributions with purely exponential time behavior; the background is of course present, but explicitly separated. The resolvent of the Hamiltonian, restricted to the nuclear space appearing in the rigged Hilbert space, can be continued across the absolutely continuous spectrum; the singularities of the continuation are the same as those of the ''out'' eigenvectors. The free, ''in'' and ''out'' eigenvectors with complex eigenvalues and those corresponding to resonances can be approximated by physical vectors in the Hilbert space, as plane waves can. The need for having some further physical information in addition to the specification of the total Hamiltonian is apparent in the proposed framework. The formalism is applied to the Lee–Friedrichs model and to the scattering of a spinless particle by a local central potential. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.
Resumo:
Using data from 2.9 fb-1 of integrated luminosity collected with the CDF II detector at the Tevatron, we search for resonances decaying into a pair of on-shell gauge bosons, WW or WZ, where one W decays into an electron and a neutrino, and the other boson decays into two jets. We observed no statistically significant excess above the expected standard model background, and we set cross section limits at 95% confidence level on G* (Randall-Sundrum graviton), Z′, and W′ bosons. By comparing these limits to theoretical cross sections, mass exclusion regions for the three particles are derived. The mass exclusion regions for Z′ and W′ are further evaluated as a function of their gauge coupling strength.
Resumo:
Using data from 2.9/fb of integrated luminosity collected with the CDF II detector at the Tevatron, we search for resonances decaying into a pair of on-shell gauge bosons, WW or WZ, where one W decays into an electron and a neutrino, and the other boson decays into two jets. We observed no statistically significant excess above the expected standard model background, and we set cross section limits at 95% confidence level on G*(Randall-Sundrum graviton), Z', and W' bosons. By comparing these limits to theoretical cross sections, mass exclusion regions for the three particles are derived. The mass exclusion regions for Z' and W' are further evaluated as a function of their gauge coupling strength.
Resumo:
We present a search for high-mass neutral resonances using dimuon data corresponding to an integrated luminosity of 2.3 fb$^{-1}$ collected in {$p\bar p$} collisions at {$\sqrt{s}$ = 1.96 TeV} by the CDF II detector at the Fermilab Tevatron. No significant excess above the standard model expectation is observed in the dimuon invariant-mass spectrum. We set 95% confidence level upper limits on $\sigma \cdot BR (p \bar{p} \to X \to \mu \bar{\mu})$, where $X$ is a boson with spin 0, 1, or 2. Using these cross section limits, we determine lower mass limits on sneutrinos in R-parity-violating supersymmetric models, $Z'$ bosons, and Kaluza-Klein gravitons in the Randall-Sundrum model.
Resumo:
We report a search for narrow resonances, produced in $p\bar{p}$ collisions at $\sqrt{s}=1.96$ TeV, that decay into muon pairs with invariant mass between 6.3 and 9.0 GeV/c^2. The data, collected with the CDF~II detector at the Fermilab Tevatron collider, correspond to an integrated luminosity of 630 pb$^{-1}$. We use the dimuon invariant mass distribution to set 90% upper credible limits of about 1% to the ratio of the production cross section times muonic branching fraction of possible narrow resonances to that of the $\Upsilon(1{\rm S})$ meson.
Resumo:
We present new limits on resonant tb production in proton-antiproton collisions at 1.96 TeV, using 1.9 fb^-1 of data recorded with the CDF II detector at the Fermilab Tevatron. We reconstruct a candidate mass in events with a lepton, neutrino candidate, and two or three jets, and search for anomalous tb production as modeled by W'->tb. We set a new limit on a right-handed W' with standard model-like coupling, excluding any mass below 800 GeV at 95% C.L. The cross-section for any narrow, resonant tb production between 750 and 950 GeV is found to be less than 0.28 pb at 95% C.L. We also present an exclusion of the W' coupling strength versus W' mass over the range 300 to 950 GeV.
Resumo:
Anderson localised states in the bulk of a disordered medium appear as sharp resonances near the surface. The resonant backscattering leads to an energy-dependent random time delay for an incident electron. We derive an analytic expression for the delay-time probability distribution at a given energy. This is shown to give a 1/f noise for the surface currents in general.
Resumo:
A search for high-mass resonances in the $e^+e^-$ final state is presented based on 2.5 fb$^{-1}$ of $\sqrt{s}=$1.96 TeV $p\bar{p}$ collision data from the CDF II detector at the Fermilab Tevatron. The largest excess over the standard model prediction is at an $e^+e^-$ invariant mass of 240 GeV/$c^2$. The probability of observing such an excess arising from fluctuations in the standard model anywhere in the mass range of 150--1,000 GeV/$c^2$ is 0.6% (equivalent to 2.5 $\sigma$). We exclude the standard model coupling $Z'$ and the Randall-Sundrum graviton for $k/\overline{M}_{Pl}=0.1$ with masses below 963 and 848 GeV/$c^2$ at the 95% credibility level, respectively.
Resumo:
We report a single C-13 spin edited selective proton-proton correlation experiment to decipher overcrowded 13C coupled proton NMR spectra of weakly dipolar coupled spin systems. The experiment unravels the masked C-13 satellites in proton spectrum and permits the measurement of one bond carbon-proton residual dipolar couplings in I3S and for each diastereotopic proton in I2S groups. It also provides all the possible homonuclear proton-proton residual couplings which are otherwise difficult to extract from the broad and featureless one dimensional H-1 spectrum, in addition to enantiodifferentiation in a chiral molecule. Employment of heteronuclear (C-13) decoupling in the evolution period results in complete demixing of overlapped signals from enantiomers. The observed anomalous intensity pattern in strongly dipolar coupled methyl protons in methyl selective correlation experiment has been interpreted using polarization operator formalism. (C) 2010 Elsevier Inc. All rights reserved.