972 resultados para Myosin Type V


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The myosin-V family of molecular motors is known to be under sophisticated regulation, but our knowledge of the roles and regulation of myosin-Vs in cytokinesis is limited. Here, we report that the myosin-V Myo51 affects contractile ring assembly and stability during fission yeast cytokinesis, and is regulated by two novel coiled-coil proteins, Rng8 and Rng9. Both rng8Δ and rng9Δ cells display similar defects as myo51Δ in cytokinesis. Rng8 and Rng9 are required for Myo51's localizations to cytoplasmic puncta, actin cables, and the contractile ring. Myo51 puncta contain multiple Myo51 molecules and walk continuously on actin filaments in rng8(+) cells, whereas Myo51 forms speckles containing only one dimer and does not move efficiently on actin tracks in rng8Δ. Consistently, Myo51 transports artificial cargos efficiently in vivo, and this activity is regulated by Rng8. Purified Rng8 and Rng9 form stable higher-order complexes. Collectively, we propose that Rng8 and Rng9 form oligomers and cluster multiple Myo51 dimers to regulate Myo51 localization and functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Altering the number of surface receptors can rapidly modulate cellular responses to extracellular signals. Some receptors, like the transferrin receptor (TfR), are constitutively internalized and recycled to the plasma membrane. Other receptors, like the epidermal growth factor receptor (EGFR), are internalized after ligand binding and then ultimately degraded in the lysosome. Routing internalized receptors to different destinations suggests that distinct molecular mechanisms may direct their movement. Here, we report that the endosome-associated protein hrs is a subunit of a protein complex containing actinin-4, BERP, and myosin V that is necessary for efficient TfR recycling but not for EGFR degradation. The hrs/actinin-4/BERP/myosin V (CART [cytoskeleton-associated recycling or transport]) complex assembles in a linear manner and interrupting binding of any member to its neighbor produces an inhibition of transferrin recycling rate. Disrupting the CART complex results in shunting receptors to a slower recycling pathway that involves the recycling endosome. The novel CART complex may provide a molecular mechanism for the actin-dependence of rapid recycling of constitutively recycled plasma membrane receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We characterized the novel Schizosaccharomyces pombe genes myo4+ and myo5+, both of which encode myosin-V heavy chains. Disruption of myo4 caused a defect in cell growth and led to an abnormal accumulation of secretory vesicles throughout the cytoplasm. The mutant cells were rounder than normal, although the sites for cell polarization were still established. Elongation of the cell ends and completion of septation required more time than in wild-type cells, indicating that Myo4 functions in polarized growth both at the cell ends and during septation. Consistent with this conclusion, Myo4 was localized around the growing cell ends, the medial F-actin ring, and the septum as a cluster of dot structures. In living cells, the dots of green fluorescent protein-tagged Myo4 moved rapidly around these regions. The localization and movement of Myo4 were dependent on both F-actin cables and its motor activity but seemed to be independent of microtubules. Moreover, the motor activity of Myo4 was essential for its function. These results suggest that Myo4 is involved in polarized cell growth by moving with a secretory vesicle along the F-actin cables around the sites for polarization. In contrast, the phenotype of myo5 null cells was indistinguishable from that of wild-type cells. This and other data suggest that Myo5 has a role distinct from that of Myo4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sinovitis in Scleroderma (SSc) is rare, usually aggressive and fully resembles rheumatoid arthritis. Experimental models of SSc have been used in an attempt to understand its pathogenesis. Previous studies done in our laboratory had already revealed the presence of a synovial remodeling process in rabbits immunized with collagen V. To validate the importance of collagen type V and to explore the quantitative relationship between this factor and synovia remodeling as well as the relationship between collagen type V and other collagens, we studied the synovial tissue in immunized rabbits. Rabbits (N= 10) were immunized with collagen V plus Freund's adjuvant and compared with animals inoculated with adjuvant only (N= 10). Synovial tissues were submitted to histological analysis, immunolocalization to collagen I, III and V and biochemical analysis by eletrophoresis, immunoblot and densitometric method. The synovial tissue presented an intense remodeling process with deposits of collagen types I, III and V after 75 and 120 days of immunization, mainly distributed around the vessels and interstitium of synovial extracellular matrix. Densitometric analysis confirmed the increased synthesis of collagen I, III and V chains (407.69 +/- 80.31; 24.46 +/- 2.58; 70.51 +/- 7.66, respectively) in immunized rabbits when compared with animals from control group (164.91 +/- 15.67; 12.89 +/- 1.05; 32 +/- 3.57) (p<0.0001). We conclude that synovial remodeling observed in the experimental model can reflect the articular compromise present in patients with scleroderma. Certainly, this experimental model induced by collagen V immunization will bring new insights in to pathogenic mechanisms and allow the testing of new therapeutic strategies to ameliorate the prognosis for scleroderma patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and purpose: Hereditary sensory and autonomic neuropathy ( HSAN) type V is a very rare disorder. It is characterized by the absence of thermal and mechanical pain perception caused by decreased number of small diameter neurons in peripheral nerves. Recent genetic studies have pointed out the aetiological role of nerve growth factor beta, which is also involved in the development of the autonomic nervous system and cholinergic pathways in the brain. HSAN type V is usually reported not to cause mental retardation or cognitive decline. However, a structured assessment of the cognitive pro. le of these patients has never been made. Methods and results: We performed a throughout evaluation of four HSAN type V patients and compared their performance with 37 normal individuals. Our patients showed no cognitive deficits, not even mild ones. Discussion and Conclusions: Although newer mutations on this and related disorders are continuously described, their clinical characterization has been restricted to the peripheral aspects of these conditions. A broader characterization of this rare disorder may contribute to better understand the mechanisms of the nociceptive and cognitive aspects of pain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les phospholipases A2 sécrétées (sPLA2) font partie d’une grande famille d’enzymes impliquées dans la synthèse d’écosanoïdes, de chimiokines et dans l’expression de molécules d’adhérence. Ce groupe comprend dix isoformes différentes (sPLA2-IB, -IIA, -IIC, -IID, -IIE, -IIF, -III, -V, -X et XII) dont la majorité sont surexprimées en présence de molécules pro-inflammatoires telles que l’interleukine-1β (IL-1 β) et le lipopolysaccharide bactérien (LPS). La sPLA2-IIA fut longtemps considérée comme la principale sPLA2 associée à l’inflammation. Toutefois, un nombre grandissant d’études suggère l’implication d’autres isoformes dans la réponse inflammatoire. Étant donné la similarité structurelle des différentes isoformes de sPLA2, la majorité des inhibiteurs présentement disponibles sont non spécifiques et bloquent simultanément plus d’une sPLA2. De ce fait, encore peu de choses sont connues quant au rôle précis de chacune des sPLA2 dans la réponse inflammatoire. Ayant accès à des souris génétiquement modifiées n’exprimant pas la sPLA2-V (sPLA2-V-/-), nous avons donc investigué le rôle spécifique de la sPLA2-V dans le recrutement leucocytaire induit par le LPS, ainsi que sa capacité à moduler l’expression de certaines molécules d’adhérence. Pour ce faire, nous avons utilisé le modèle inflammatoire de la poche d’air sous-cutanée. L’administration de LPS dans la poche d’air de souris contrôles (WT) entraîne un recrutement leucocytaire important. Cet appel de cellules inflammatoires est cependant significativement diminué chez les souris sPLA2-V-/-. De plus, l’expression des molécules d’adhérence VCAM-1 et ICAM-1 est également diminuée chez les souris sPLA2-V-/- comparativement aux souris WT. Nos résultats démontrent donc le rôle important de la sPLA2-V dans le recrutement leucocytaire et l’expression de molécules d’adhérence induits par le LPS, confirmant ainsi l’implication de cette enzyme dans le processus inflammatoire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myosin-Va is a Ca 2+/calmodulin-regulated unconventional myosin involved in the transport of vesicles, membranous organelles, and macromolecular complexes composed of proteins and mRNA. The cellular localization of myosin-Va has been described in great detail in several vertebrate cell types, including neurons, melanocytes, lymphocytes, auditory tissues, and a number of cultured cells. Here, we provide an immunohistochemical view of the tissue distribution of myosin-Va in the major endocrine organs. Myosin-Va is highly expressed in the pineal and pituitary glands and in specific cell populations of other endocrine glands, especially the parafollicular cells of the thyroid, the principal cells of the parathyroid, the islets of Langerhans of the pancreas, the chromaffin cells of the adrenal medulla, and a subpopulation of interstitial testicular cells. Weak to moderate staining has been detected in steroidogenic cells of the adrenal cortex, ovary, and Leydig cells. Myosin-Va has also been localized to non-endocrine cells, such as the germ cells of the seminiferous epithelium and maturing oocytes and in the intercalated ducts of the exocrine pancreas. These data provide the first systematic description of myosin-Va localization in the major endocrine organs of rat. © 2008 Springer-Verlag.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Myosins are molecular motors associated with the actin cytoskeleton that participate in the mechanisms of cellular motility. During the development of the nervous system, migration of nerve cells to specific sites, extension of growth cones, and axonal transport are dramatic manifestations of cellular motility. We demonstrate, via immunoblots, the expression of myosin Va during early stages of embryonic development in chicks, extending from the blastocyst period to the beginning of the fetal period. The expression of myosin Va in specific regions and cellular structures of the nervous system during these early stages was determined by immunocytochemistry using a polyclonal antibody. Whole mounts of chick embryos at 24-30-h stages showed intense immunoreactivity of the neural tube in formation along its full extent. Cross-sections at these stages of development showed strong labeling in neuroepithelial cells at the basal and apical regions of the neural tube wall. Embryos at more advanced periods of development (48h and 72 h) showed distinctive immunolabeling of neuroepithelial cells, neuroblasts and their cytoplasmic extensions in the mantle layer of the stratified neural tube wall, and neuroblasts and their cytoplasmic extensions in the internal wall of the optic cup, as well as a striking labeling of cells in the apparent nuclei of cranial nerves and budding fibers. These immunolocalization studies indicate temporal and site-specific expression of myosin Va during chick embryo development, suggesting that myosin Va expression is related to recruitment for specific cellular tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the full-length and two engineered soluble forms (C1-C2 and Cla-C2) of type V adenylyl cyclase (ACV), we have investigated the role of an intramolecular interaction in ACV that modulates the ability of the α subunit of the stimulatory GTP-binding protein of AC (Gsα) to stimulate enzyme activity. Concentration–response curves with Gsα suggested the presence of high and low affinity sites on ACV, which interact with the G protein. Activation of enzyme by Gsα interaction at these two sites was most apparent in the C1a-C2 form of ACV, which lacks the C1b region (K572–F683). Yeast two-hybrid data demonstrated that the C1b region interacted with the C2 region and its 64-aa subdomain, C2I. Using peptides corresponding to the C2I region of ACV, we investigated the role of the C1b/C2I interaction on Gsα-mediated stimulation of C1-C2 and full-length ACV. Our data demonstrate that a 10-aa peptide corresponding to L1042–T1051 alters the profile of the activation curves of full-length and C1-C2 forms of ACV by different Gsα concentrations to mimic the activation profile observed with C1a-C2 ACV. The various peptides used in our studies did not alter forskolin-mediated stimulation of full-length and C1-C2 forms of ACV. We conclude that the C1b region of ACV interacts with the 10-aa region (L1042–T1051) in the C2 domain of the enzyme to modulate Gsα-elicited stimulation of activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deficiency of dolichyl-P-Glc:Man9GlcNAc2-PP-dolichyl glucosyltransferase is the cause of an additional type of carbohydrate-deficient glycoprotein syndrome (CDGS type V). Clinically this type resembles the classical type Ia of CDGS caused by the deficiency of phosphomannomutase. As a result of the glucosyltransferase deficiency in CDGS type V nonglucosylated lipid-linked oligosaccharides accumulate. The defect is leaky and glucosylated oligosaccharides are found on nascent glycoproteins. The limited availability of glucosylated lipid-linked oligosaccharides explains the incomplete usage of N-glycosylation sites in glycoproteins. This finding is reflected in the presence of transferrin forms in serum that lack one or both of the two N-linked oligosaccharides and the reduction of mannose incorporation to about one-third of control in glycoproteins of fibroblasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Functional specialization is tightly linked to the ability of eukaryotic cells to acquire a particular shape. Cell morphogenesis, in turn, relies on the capacity to establish and maintain cell "polarity", which is achieved by orienting the trafficking of signaling molecules and organelles towards specific cellular locations and/or membrane domains. The "oriented" transport is based upon cytoskeletal polymers, microtubules and actin filaments, which serve as tracks for molecular motors. These latter generate motion that is translated either into pulling forces or directed transport. Fission yeast, a rod-like unicellular eukaryote, shapes itself by restricting growth at cell tips through the concerted activity of microtubules and actin cables. Microtubules, which assemble into 2-6 bundles and run parallel to the long axis of the cell, serve to orient growth to the tips. Growth is supported by the actin cytoskeleton, which provides tracks, the cables, for motor-based transport of secretory vesicles. The molecular motors, which bind cargos and deliver them to the tips along cables, are also known as type V myosins (hereafter indicated as myosin V). How the bundles of parallel actin filaments, i.e. the cables, extend from the tips through the cell and whether they serve any other purpose, besides providing tracks, is poorly understood. It is also unclear how the crosstalk between the two cytoskeletal systems is achieved. These are the basic questions I addressed during my PhD. The first part of the thesis work (Chapter two) suggests that the sole function of actin cables in polarized growth is to serve as tracks for motors. The data indicate that cells may have evolved two cytoskeletal systems to provide robustness to the polarization process but in principle a unique cytoskeleton might have been able to direct and support polarized growth. How actin cables are organized within the cell to optimize cargo transport is addressed later on (Chapter three). The major finding, based on the actin cable defect of cells lacking myosin Vs, is that actin filaments self-organize through the activity of the transport motors. In fact, by delivering cargos to cell tips and exerting physical pulling forces on actin filaments, Myosin Vs contribute not only to polarize cargo transport but also actin tracks. Among the cargos transported by Myosin V, which may be relevant to its function in organizing cables, there is likely the endoplasmic reticulum (ER). Actin cables, which run parallel to cortical ER, may serve as tracks for Myosin V. Myosin V-driven displacement, in turn, may account for the dynamic expansion and organization of ER during polarized growth as suggested in Chapter four. The last part of the work (Chapter five) highlights the existence of a crosstalk between actin and microtubules. In absence of myosin V, indeed, microtubules contribute to actin cable organization, likely playing a scaffolding/tethering function. Whether or not the kinesin 1, Klp3, plays any role in such process has to be demonstrated. In conclusion the work proposes a novel role for myosin Vs in actin organization, besides its transport function, and provides molecular tools to further dissect the role of this type of myosin in fission yeast. - La spécialisation fonctionnelle est étroitement connectée à la capacité des cellules eucaryotes d'acquérir une forme particulière. La morphogenèse cellulaire à son tour, est basée sur la capacité d'établir et de maintenir la polarité cellulaire, polarité réalisée en orientant le trafic des molécules signales et des organelles vers des zones cellulaires spécifiques. Ce transport directionnel dépend des polymères du cytosquelette, microtubules et microfilaments, qui servent comme des voies pour les moteurs moléculaires. Ces derniers engendrent du mouvement, traduit soit en force de traction soit en transport directionnel. La levure fissipare, un eucaryote unicellulaire en forme de bâtonnet, acquière sa forme en limitant sa croissance aux extrémités par l'action concertée des microtubules et de l'actine. Les microtubules, qui s'assemblent de façon antiparallèle et parcourent la cellule parallèlement à l'axe longitudinal, servent à orienter la croissance aux extrémités. Cette croissance est permise par le cytosquelette d'actine, fournissant des voies, les câbles, pour le transport actif des vésicules de sécrétion. Les moteurs moléculaires, responsables de ce transport actif sont aussi appelés myosines de type V (par la suite appelés myosines V). La manière dont ces câbles s'étendent depuis l'extrémité jusqu'à l'intérieur de la cellule est peu connue. De plus, on ignore également si ces câbles présentent une fonction autre que le transport. L'interaction entre les deux cytosquelettes est également obscure. Ce sont ces questions de base auxquelles j'ai tenté de répondre lors de ma thèse. La première partie de cette thèse (chapitre II) suggère que les câbles d'actine, pendant la croissance polarisée, fonctionnent uniquement comme des voies pour les moteurs moléculaires. Les données indiqueraient que les cellules ont fait évoluer deux systèmes de cytosquelette pour assurer plus de robustesse au processus de polarisation, bien que, comme nous le verrons, un système unique est suffisant. Au chapitre III, nous verrons comment les câbles d'actine sont organisés à l'intérieur de la cellule afin d'optimiser le transport des cargo. La découverte majeure, réalisée en observant des cellules dont la myosine V fait défaut, est que ces filaments d'actine s'auto organisent grâce au passage des moteurs moléculaires le long de ces voies. En réalité, en délivrant les cargos aux extrémités de la cellule et en exerçant des forces de traction sur les câbles, les myosines V contribuent non seulement à polariser le transport mais également à polariser les voies elles mêmes. Nous verrons également au chapitre IV, que parmi les cargos importants pour l'organisation des câbles, il y aurait le réticulum endoplasmique (RE). En effet, les câbles d'actine, qui s'étalent parallèlement au RE cortical, pourraient servir comme voie pour la myosine V. Cette dernière en retour pourrait être responsable de l'expansion dynamique et de l'organisation du RE pendant la croissance polarisée.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Limitations on tissue proliferation capacity determined by telomerase/apoptosis balance have been implicated in pathogenesis of idiopathic pulmonary fibrosis. In addition, collagen V shows promise as an inductor of apoptosis. We evaluated the quantitative relationship between the telomerase/apoptosis index, collagen V synthesis, and epithelial/fibroblast replication in mice exposed to butylated hydroxytoluene (BHT) at high oxygen concentration. Two groups of mice were analyzed: 20 mice received BHT, and 10 control mice received corn oil. Telomerase expression, apoptosis, collagen I, III, and V fibers, and hydroxyproline were evaluated by immunohistochemistry, in situ detection of apoptosis, electron microscopy, immunofluorescence, and histomorphometry. Electron microscopy confirmed the presence of increased alveolar epithelial cells type 1 (AEC1) in apoptosis. Immunostaining showed increased nuclear expression of telomerase in AEC type 2 (AEC2) between normal and chronic scarring areas of usual interstitial pneumonia (UIP). Control lungs and normal areas from UIP lungs showed weak green birefringence of type I and III collagens in the alveolar wall and type V collagen in the basement membrane of alveolar capillaries. The increase in collagen V was greater than collagens I and III in scarring areas of UIP. A significant direct association was found between collagen V and AEC2 apoptosis. We concluded that telomerase, collagen V fiber density, and apoptosis evaluation in experimental UIP offers the potential to control reepithelization of alveolar septa and fibroblast proliferation. Strategies aimed at preventing high rates of collagen V synthesis, or local responses to high rates of cell apoptosis, may have a significant impact in pulmonary fibrosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Proteinaceous toxins are observed across all levels of inter-organismal and intra-genomic conflicts. These include recently discovered prokaryotic polymorphic toxin systems implicated in intra-specific conflicts. They are characterized by a remarkable diversity of C-terminal toxin domains generated by recombination with standalone toxin-coding cassettes. Prior analysis revealed a striking diversity of nuclease and deaminase domains among the toxin modules. We systematically investigated polymorphic toxin systems using comparative genomics, sequence and structure analysis. Results: Polymorphic toxin systems are distributed across all major bacterial lineages and are delivered by at least eight distinct secretory systems. In addition to type-II, these include type-V, VI, VII (ESX), and the poorly characterized "Photorhabdus virulence cassettes (PVC)", PrsW-dependent and MuF phage-capsid-like systems. We present evidence that trafficking of these toxins is often accompanied by autoproteolytic processing catalyzed by HINT, ZU5, PrsW, caspase-like, papain-like, and a novel metallopeptidase associated with the PVC system. We identified over 150 distinct toxin domains in these systems. These span an extraordinary catalytic spectrum to include 23 distinct clades of peptidases, numerous previously unrecognized versions of nucleases and deaminases, ADP-ribosyltransferases, ADP ribosyl cyclases, RelA/SpoT-like nucleotidyltransferases, glycosyltranferases and other enzymes predicted to modify lipids and carbohydrates, and a pore-forming toxin domain. Several of these toxin domains are shared with host-directed effectors of pathogenic bacteria. Over 90 families of immunity proteins might neutralize anywhere between a single to at least 27 distinct types of toxin domains. In some organisms multiple tandem immunity genes or immunity protein domains are organized into polyimmunity loci or polyimmunity proteins. Gene-neighborhood-analysis of polymorphic toxin systems predicts the presence of novel trafficking-related components, and also the organizational logic that allows toxin diversification through recombination. Domain architecture and protein-length analysis revealed that these toxins might be deployed as secreted factors, through directed injection, or via inter-cellular contact facilitated by filamentous structures formed by RHS/YD, filamentous hemagglutinin and other repeats. Phyletic pattern and life-style analysis indicate that polymorphic toxins and polyimmunity loci participate in cooperative behavior and facultative 'cheating' in several ecosystems such as the human oral cavity and soil. Multiple domains from these systems have also been repeatedly transferred to eukaryotes and their viruses, such as the nucleo-cytoplasmic large DNA viruses. Conclusions: Along with a comprehensive inventory of toxins and immunity proteins, we present several testable predictions regarding active sites and catalytic mechanisms of toxins, their processing and trafficking and their role in intra-specific and inter-specific interactions between bacteria. These systems provide insights regarding the emergence of key systems at different points in eukaryotic evolution, such as ADP ribosylation, interaction of myosin VI with cargo proteins, mediation of apoptosis, hyphal heteroincompatibility, hedgehog signaling, arthropod toxins, cell-cell interaction molecules like teneurins and different signaling messengers.