782 resultados para Muscle Soreness
Resumo:
This study compared four different intensities of a bench press exercise for muscle soreness, creatine kinase activity, interleukin (IL)-1, IL-6, tumor necrosis factor- (TNF-), and prostaglandin E2 (PGE2) concentrations in the blood. Thirty-five male Brazilian Army soldiers were randomly assigned to one of five groups: 50% one-repetition maximum (1-RM), 75% 1-RM, 90% 1-RM, 110% 1-RM, and a control group that did not perform the exercise. The total volume (setsrepetitionsload) of the exercise was matched among the exercise groups. Muscle soreness and plasma creatine kinase activity increased markedly (P0.05) after exercise, with no significant differences among the groups. Serum PGE2 concentration also increased markedly (P0.05) after exercise, with a significantly (P0.05) greater increase in the 110% 1-RM group compared with the other groups. A weak but significant (P0.05) correlation was found between peak muscle soreness and peak PGE2 concentration, but no significant correlation was evident between peak muscle soreness and peak creatine kinase activity, or peak creatine kinase activity and peak PGE2 concentration. All groups showed no changes in IL-1, IL-6 or TNF-. Our results suggest that the intensity of bench press exercise does not affect the magnitude of muscle soreness and blood markers of muscle damage and inflammation.
Resumo:
BACKGROUND Delayed-onset muscle soreness (DOMS) is a common symptom in people participating in exercise, sport, or recreational physical activities. Several remedies have been proposed to prevent and alleviate DOMS. DESIGN AND METHODS A five-arm randomized controlled study was conducted to examine the effects of acupuncture on eccentric exercise-induced DOMS of the biceps brachii muscle. Participants were recruited through convenience sampling of students and general public. Participants were randomly allocated to needle, laser, sham needle, sham laser acupuncture, and no intervention. Outcome measures included pressure pain threshold (PPT), pain intensity (visual analog scale), and maximum isometric voluntary force. RESULTS Delayed-onset muscle soreness was induced in 60 participants (22 females, age 23.6 ± 2.8 years, weight 66.1 ± 9.6 kg, and height 171.6 ± 7.9 cm). Neither verum nor sham interventions significantly improved outcomes within 72 hours when compared with no treatment control (P > 0.05). CONCLUSIONS Acupuncture was not effective in the treatment of DOMS. From a mechanistic point of view, these results have implications for further studies: (1) considering the high-threshold mechanosensitive nociceptors of the muscle, the cutoff for PPT (5 kg/cm) chosen to avoid bruising might have led to ceiling effects; (2) the traditional acupuncture regimen, targeting muscle pain, might have been inappropriate as the DOMS mechanisms seem limited to the muscular unit and its innervation. Therefore, a regionally based regimen including an intensified intramuscular needling (dry needling) should be tested in future studies, using a higher cutoff for PPT to avoid ceiling effects.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Effect of eccentric contraction velocity on muscle damage in repeated bouts of elbow flexor exercise
Resumo:
Eccentric exercise induces muscle damage, but controversy exists concerning the effect of contraction velocity on the magnitude of muscle damage, and little is known about the effect of contraction velocity on the repeated-bout effect. This study examined slow (60 degrees.s(-1)) and fast (180 degrees.s(-1)) velocity eccentric exercises for changes in indirect markers of muscle damage following 3 exercise bouts that were performed every 2 weeks. Fifteen young men were divided into 2 groups based on the velocity of eccentric exercise: 7 in the Ecc60 (60 degrees.s(-1)) group, and 8 in the Ecc180 (180 degrees.s(-1)) group. The exercise consisted of 30 maximal eccentric contractions of the elbow flexors at each velocity, in which the elbow joint was forcibly extended from 60 degrees to 180 degrees (full extension) on an isokinetic dynamometer. Changes in maximal voluntary isometric contraction strength, range of motion, muscle soreness, and plasma creatine kinase activity before and for 4 days after the exercise were compared in the 2 groups using a mixed-model analysis (group x bout x time). No significant differences between groups were evident for changes in any variables following exercise bouts; however, the changes were significantly smaller (p < 0.05) after the second and third bouts than after the first bout. These results indicate that the contraction velocity does not influence muscle damage or the repeated-bout effect.
Resumo:
Purpose: We examined the effects of short-term beta -hydroxy-beta -methylbutyrate (HIM) supplementation on symptoms of muscle damage following an acute bout of eccentric exercise. Methods: Non-resistance trained subjects were randomly assigned to a HMB supplement group (HMB, 40mg/kg bodyweight/day, n = 8) or placebo group (CON, n = 9). Supplementation commenced 6 days prior to a bout of 24 maximal isokinetic eccentric contractions of the elbow flexors and continued throughout post-testing. Muscle soreness, upper arm girth, and torque measures were assessed pre-exercise, 15 min post-exercise, and 1, 2, 3, 4, 7, and 10 days post-exercise. Results: No pre-test differences between HMB and CON groups were identified, and both performed a similar amount of eccentric work during the main eccentric exercise bout (p > .05). HMB supplementation had no effect on swelling, muscle soreness, or torque following the damaging eccentric exercise bout (p > .05). Conclusion: Compared to a placebo condition, short-term supplementation with 40mg/kg bodyweight/day of HMB had no beneficial effect on a range of symptoms associated with eccentric muscle damage. If HMB can produce an ergogenic response, a longer pre-exercise supplementation period may be necessary.
Resumo:
Abstract Introduction: Exhaustive and/or unaccustomed exercise, mainly those involving eccentric muscle actions, induces temporary muscle damage, evidenced by Delayed Onset Muscle Soreness. Different strategies to recover the signs and symptoms of this myogenic condition have been studied by researchers, as a result a significant number of articles on this issue have been published. Purpose: A systematic review was conducted to assess the evidence of the physiotherapeutic interventions of exercise-induced muscle damage. Methods: The electronic data bases were searched, including MEDLINE (1996-2011), CINHAL (1982- 2011), EMBASE (1988-2011), PEDro (1950-2011), and SPORTDiscus (1985-2011). Systematic review was limited to randomized control trials (RCTs) studies, written in English or Portuguese, which included physiotherapeutic interventions, namely massage, cryotherapy, stretching and low-intensity exercise, on adult human subjects (18-60 years old) of either gender. Studies were excluded when the intervention could not be assessed independently. The methodological quality of RCTs was independently assessed with the PEDro Scale by three reviewers. Results: Thirty-three studies were included in the systematic review; eight analyzed the effects of the massage, ten analyzed the effects of the cryotherapy, eight the effect of stretching and seventeen focused low-intensity exercise intervention. The results suggest that massage is the most effective intervention and that there is inconclusive evidence to support the use of cryotherapy; whereas the other conventional, namely stretching and low-intensity exercise, there is no evidence to prove their efficacy. Conclusion: The results allow the conclusion that massage is the physiotherapeutic intervention that demonstrated to be the most effective in the relief of symptoms and signs of exercise-induced muscle damage, as a result, massage should still be used in the muscular recovery after sports activities.
Resumo:
Running economy (RE), defined as the energy demand for a given velocity of submaximal running, has been identified as a critical factor of overall distance running performance. Plyometric and resistance trainings, performed during a relatively short period of time (15-30 days), have been successfully used to improve RE in trained athletes. However, these exercise types, particularly when they are unaccustomed activities for the individuals, may cause delayed onset muscle soreness, swelling, and reduced muscle strength. Some studies have demonstrated that exercise-induced muscle damage has a negative impact on endurance running performance. Specifically, the muscular damage induced by an acute bout of downhill running has been shown to reduce RE during subsequent moderate and high-intensity exercise (>65% VOax). However, strength exercise (i.e., jumps, isoinertial and isokinetic eccentric exercises) seems to impair RE only for subsequent high-intensity exercise (90% VOax). Finally, a single session of resistance exercise or downhill running (i.e., repeated bout effect) attenuates changes in indirect markers of muscle damage and blunts changes in RE. © 2013 Cláudio de Oliveira Assumpção et al.
Resumo:
The present study compared the changes in markers of muscle damage after bouts of resistance exercise employing the Multiple-sets (MS) and Half-pyramid (HP) training systems. Ten healthy men (26.1 +/- 6.3 years), who had been involved in regular resistance training, performed MS and HP bouts, 14 days apart, in a randomised, counter-balanced manner. For the MS bout, participants performed three sets of maximum repetitions at 75%-1RM (i.e. 75% of a One Repetition Maximum) for the three exercises, starting with the bench press, followed by pec deck and decline bench press. For the HP bout, the participants performed three sets of maximum repetitions with 67%-1RM, 74%-1RM and 80%-1RM for the first, second and third sets, respectively, for the same three exercise sequences as the MS bout. The total volume of load lifted was equated between both bouts. Muscle soreness, plasma creatine kinase (CK) activity, myoglobin (Mb) and C-reactive protein (CRP) concentrations were assessed before and for three days after each exercise bout, and the changes over time were compared between MS and HP using two-way repeated measures ANOVA. Muscle soreness developed significantly (P<0.01) after both bouts, but no significant difference was observed between MS and HP. Plasma CK activity and Mb concentration increased significantly (P<0.01) without significant differences between bouts, and CRP concentration did not change significantly after either bout. These results suggest that the muscle damage profile is similar for MS and HP, probably due to the similar total volume of load lifted.
Resumo:
Branched-chain amino acids (BCAA) supplementation has been considered an interesting nutritional strategy to improve skeletal muscle protein turnover in several conditions. In this context, there is evidence that resistance exercise (RE)-derived biochemical markers of muscle soreness (creatine kinase (CK), aldolase, myoglobin), soreness, and functional strength may be modulated by BCAA supplementation in order to favor of muscle adaptation. However, few studies have investigated such effects in well-controlled conditions in humans. Therefore, the aim of this short report is to describe the potential therapeutic effects of BCAA supplementation on RE-based muscle damage in humans. The main point is that BCAA supplementation may decrease some biochemical markers related with muscle soreness but this does not necessarily reflect on muscle functionality.
Resumo:
The muscle has a wide range of possibilities to adapt its phenotype. Repetitive submaximal concentric exercise (i.e., shortening contractions) mainly leads to adaptations of muscle oxidative metabolism and endurance while eccentric exercise (i.e., lengthening contractions) results in muscle growth and gain of muscle strength. Modified gene expression is believed to mediate these exercise-specific muscle adjustments. In the present study, early alterations of the gene expression signature were monitored by a muscle-specific microarray. Transcript profiling was performed on muscle biopsies of vastus lateralis obtained from six male subjects before and in a 24-h time course after a single bout of mild eccentric ergometer exercise. The eccentric exercise consisted of 15 min of eccentric cycling at 50% of the individual maximal concentric power output leading to muscle soreness (5.9 on a 0-10 visual analogue scale) and limited muscle damage (1.7-fold elevated creatine kinase activity). Muscle impairment was highlighted by a transient reduction in jumping height after the eccentric exercise. On the gene expression level, we observed a general early downregulation of detected transcripts, followed by a slow recovery close to the control values within the first 24 h post exercise. Only very few regulatory factors were increased. This expression signature is different from the signature of a previously published metabolic response after an intensive endurance-type concentric exercise as well as after maximal eccentric exercise. This is the first description of the time course of changes in gene expression as a consequence of a mild eccentric stimulus.
Resumo:
Creatine Kinase (CK) is used as a measure of exercise-induced muscle membrane damage. During acute eccentric (muscle lengthening) exercise, muscle sarcolemma, sarcoplasmic reticulum, and Z-lines are damaged, thus causing muscle proteins and enzymes to leak into the interstitial fluid. Strenuous eccentric exercise produces an elevation of oxygen free radicals, which further increases muscle damage. Muscle soreness and fatigue can be attributed to this membrane damage. Estradiol, however, may preserve membrane stability post-exercise (Brancaccio, Maffulli, & Limongelli, 2007; Carter, Dobridge, & Hackney, 2001; Tiidus, 2001). Because estradiol has a similar structure to Vitamin E, which is known to have antioxidant properties, and both are known to affect membrane structure, researchers have proposed that estrogen acts as an antioxidant to provide a protective effect on the post-exercise muscle of women (Sandoval & Matt, 2002). As a result, it has been postulated that muscles in women incur less damage in response to an acute strenuous exercise as compared to men. PURPOSE: To determine if circulating estrogen concentrations are related to muscle damage, as measured by creatine kinase activity and to determine gender differences in creatine kinase as a marker of muscle damage in response to an acute heavy resistance exercise protocol. METHODS: 7 healthy, resistance-trained, eumenhorrheic women (23±3 y, 169±9.1 cm, 66.4±10.5 kg) and 8 healthy, resistance-trained men (25±5 y, 178±6.7 cm, 82.3±9.33 kg) volunteered to participate in the study. Subjects performed an Acute Resistance Exercise Test (ARET) consisting of 6 sets of 5 repetitions Smith machine squats at 90% of their previously determined 1-RM. Blood samples were taken pre-, mid-, post-, 1 hour post-, 6 hours post-, and 24 hours post-exercise. Samples were stored at -80ºC until analyzed. Serum creatine kinase was measured using an assay kit from Genzyme (Framingham, MA). Serum estradiol was measured by an ELISA from GenWay (San Diego, CA). Estradiol b-receptor presence on granulocytes was measured via flow cytometry using primary antibodies from Abcam (Cambridge, MA) and PeCy7 antibodies (secondary) from Santa Cruz (Santa Cruz, CA). RESULTS: No significant correlations between estrogen and CK response were found after an acute resistant exercise protocol. Moreover, no significant change in estradiol receptors were expressed on granulocytes after exercise. Creatine Kinase response, however, differed significantly between genders. Men had higher resting CK concentrations throughout all time points. Creatine Kinase response increased significantly after exercise in both men and women (p=0.008, F=9.798). Men had a significantly higher CK response at 24 hours post exercise than women. A significant condition/sex/time interaction was exhibited in CK response (p=0.02, F=4.547). Perceived general soreness presented a significant condition, sex interaction (p=0.01, F=9.532). DISCUSSION: Although no estradiol and CK response correlations were found in response to exercise, a significant difference in creatine kinase activity was present between men and women. This discrepancy of our results and findings in the literature may be due to the high variability between subjects in creatine kinase activity as well as estrogen concentrations. The lack of significance in change of estradiol receptor expression on granulocytes in response to exercise may be due to intracellular estradiol receptor staining and non-specific gating for granulocytes rather than additional staining for neutrophil markers. Because neutrophils are the initial cells present in the inflammatory response after strenuous exercise, staining for estrogen receptors on this cell type may allow for a better understanding of the effect of estrogen and its hypothesized protective effect against muscle damage. Furthermore, the mechanism of action may include estradiol receptor expression on the muscle fiber itself may play a role in the protective effects of estradiol rather than or in addition to expression on neutrophils. We have shown here that gender differences occur in CK activity as a marker of muscle damage in response to strenuous eccentric exercise, but may not be the result of estradiol concentration or estradiol receptor expression on granulocytes. Other variables should be examined in order to determine the mechanism involved in the difference in creatine kinase as a marker of muscle damage between men and women after heavy resistance exercise.
Resumo:
Aim. The purpose of this experiment was to assess the levels of muscle soreness, serum total cholesterol (TC) and creatine kinase (CK) in the first 48 hours following fatiguing eccentric exercise performed with the triceps brachii. Methods. Eleven untrained male college students performed a total of 50 eccentric elbow extensions in 8 sets (6x7 and 2x4) with a load equal to 85% of their maximal concentric elbow extension strength. Isometric elbow extension strength, muscle soreness and circumference, and serum CK and TC concentrations were measured before, immediately after, and 2, 24 and 48 hours after the exercise. Results. Statistically reliable changes in isometric strength, serum CK and TC, muscle soreness and upper arm circumference occurred within the first 48 hours following eccentric exercise. Serum TC concentrations exhibited a very rapid (within 2 hours) reduction from pre-exercise values after eccentric exercise to a relatively stable concentration of approximately 85% of baseline. Conclusion. These results suggest that serum TC concentration may follow the time-course of reductions in force generating capacity more closely than other biochemical markers of muscle damage.