928 resultados para Multivariate GARCH models
Resumo:
Internal risk management models of the kind popularized by J. P. Morgan are now used widely by the world’s most sophisticated financial institutions as a means of measuring risk. Using the returns on three of the most popular futures contracts on the London International Financial Futures Exchange, in this paper we investigate the possibility of using multivariate generalized autoregressive conditional heteroscedasticity (GARCH) models for the calculation of minimum capital risk requirements (MCRRs). We propose a method for the estimation of the value at risk of a portfolio based on a multivariate GARCH model. We find that the consideration of the correlation between the contracts can lead to more accurate, and therefore more appropriate, MCRRs compared with the values obtained from a univariate approach to the problem.
Resumo:
The paper considers various extended asymmetric multivariate conditional volatility models, and derives appropriate regularity conditions and associated asymptotic theory. This enables checking of internal consistency and allows valid statistical inferences to be drawn based on empirical estimation. For this purpose, we use an underlying vector random coefficient autoregressive process, for which we show the equivalent representation for the asymmetric multivariate conditional volatility model, to derive asymptotic theory for the quasi-maximum likelihood estimator. As an extension, we develop a new multivariate asymmetric long memory volatility model, and discuss the associated asymptotic properties.
Resumo:
Nous y introduisons une nouvelle classe de distributions bivariées de type Marshall-Olkin, la distribution Erlang bivariée. La transformée de Laplace, les moments et les densités conditionnelles y sont obtenus. Les applications potentielles en assurance-vie et en finance sont prises en considération. Les estimateurs du maximum de vraisemblance des paramètres sont calculés par l'algorithme Espérance-Maximisation. Ensuite, notre projet de recherche est consacré à l'étude des processus de risque multivariés, qui peuvent être utiles dans l'étude des problèmes de la ruine des compagnies d'assurance avec des classes dépendantes. Nous appliquons les résultats de la théorie des processus de Markov déterministes par morceaux afin d'obtenir les martingales exponentielles, nécessaires pour établir des bornes supérieures calculables pour la probabilité de ruine, dont les expressions sont intraitables.
Resumo:
The aim of this paper is to test whether or not there was evidence of contagion across the various financial crises that assailed some countries in the 1990s. Data on sovereign debt bonds for Brazil, Mexico, Russia and Argentina were used to implement the test. The contagion hypothesis is tested using multivariate volatility models. If there is any evidence of structural break in volatility that can be linked to financial crises, the contagion hypothesis will be confirmed. Results suggest that there is evidence in favor of the contagion hypothesis.
Resumo:
In this paper we use Markov chain Monte Carlo (MCMC) methods in order to estimate and compare GARCH models from a Bayesian perspective. We allow for possibly heavy tailed and asymmetric distributions in the error term. We use a general method proposed in the literature to introduce skewness into a continuous unimodal and symmetric distribution. For each model we compute an approximation to the marginal likelihood, based on the MCMC output. From these approximations we compute Bayes factors and posterior model probabilities. (C) 2012 IMACS. Published by Elsevier B.V. All rights reserved.
Resumo:
This paper revisits the issue of conditional volatility in real GDP growth rates for Canada, Japan, the United Kingdom, and the United States. Previous studies find high persistence in the volatility. This paper shows that this finding largely reflects a nonstationary variance. Output growth in the four countries became noticeably less volatile over the past few decades. In this paper, we employ the modified ICSS algorithm to detect structural change in the unconditional variance of output growth. One structural break exists in each of the four countries. We then use generalized autoregressive conditional heteroskedasticity (GARCH) specifications modeling output growth and its volatility with and without the break in volatility. The evidence shows that the time-varying variance falls sharply in Canada, Japan, and the U.K. and disappears in the U.S., excess kurtosis vanishes in Canada, Japan, and the U.S. and drops substantially in the U.K., once we incorporate the break in the variance equation of output for the four countries. That is, the integrated GARCH (IGARCH) effect proves spurious and the GARCH model demonstrates misspecification, if researchers neglect a nonstationary unconditional variance.
Resumo:
This paper applies two measures to assess spillovers across markets: the Diebold Yilmaz (2012) Spillover Index and the Hafner and Herwartz (2006) analysis of multivariate GARCH models using volatility impulse response analysis. We use two sets of data, daily realized volatility estimates taken from the Oxford Man RV library, running from the beginning of 2000 to October 2016, for the S&P500 and the FTSE, plus ten years of daily returns series for the New York Stock Exchange Index and the FTSE 100 index, from 3 January 2005 to 31 January 2015. Both data sets capture both the Global Financial Crisis (GFC) and the subsequent European Sovereign Debt Crisis (ESDC). The spillover index captures the transmission of volatility to and from markets, plus net spillovers. The key difference between the measures is that the spillover index captures an average of spillovers over a period, whilst volatility impulse responses (VIRF) have to be calibrated to conditional volatility estimated at a particular point in time. The VIRF provide information about the impact of independent shocks on volatility. In the latter analysis, we explore the impact of three different shocks, the onset of the GFC, which we date as 9 August 2007 (GFC1). It took a year for the financial crisis to come to a head, but it did so on 15 September 2008, (GFC2). The third shock is 9 May 2010. Our modelling includes leverage and asymmetric effects undertaken in the context of a multivariate GARCH model, which are then analysed using both BEKK and diagonal BEKK (DBEKK) models. A key result is that the impact of negative shocks is larger, in terms of the effects on variances and covariances, but shorter in duration, in this case a difference between three and six months.