914 resultados para Multi-phase Modelling
Resumo:
Peer reviewed
Resumo:
As the complexity of parallel applications increase, the performance limitations resulting from computational load imbalance become dominant. Mapping the problem space to the processors in a parallel machine in a manner that balances the workload of each processors will typically reduce the run-time. In many cases the computation time required for a given calculation cannot be predetermined even at run-time and so static partition of the problem returns poor performance. For problems in which the computational load across the discretisation is dynamic and inhomogeneous, for example multi-physics problems involving fluid and solid mechanics with phase changes, the workload for a static subdomain will change over the course of a computation and cannot be estimated beforehand. For such applications the mapping of loads to process is required to change dynamically, at run-time in order to maintain reasonable efficiency. The issue of dynamic load balancing are examined in the context of PHYSICA, a three dimensional unstructured mesh multi-physics continuum mechanics computational modelling code.
Resumo:
The objective of this work was to develop an easily applicable technique and a standardized protocol for high-quality post-mortem angiography. This protocol should (1) increase the radiological interpretation by decreasing artifacts due to the perfusion and by reaching a complete filling of the vascular system and (2) ease and standardize the execution of the examination. To this aim, 45 human corpses were investigated by post-mortem computed tomography (CT) angiography using different perfusion protocols, a modified heart-lung machine and a new contrast agent mixture, specifically developed for post-mortem investigations. The quality of the CT angiographies was evaluated radiologically by observing the filling of the vascular system and assessing the interpretability of the resulting images and by comparing radiological diagnoses to conventional autopsy conclusions. Post-mortem angiography yielded satisfactory results provided that the volumes of the injected contrast agent mixture were high enough to completely fill the vascular system. In order to avoid artifacts due to the post-mortem perfusion, a minimum of three angiographic phases and one native scan had to be performed. These findings were taken into account to develop a protocol for quality post-mortem CT angiography that minimizes the risk of radiological misinterpretation. The proposed protocol is easy applicable in a standardized way and yields high-quality radiologically interpretable visualization of the vascular system in post-mortem investigations.
Resumo:
BACKGROUND AND PURPOSE: Multi-phase postmortem CT angiography (MPMCTA) is increasingly being recognized as a valuable adjunct medicolegal tool to explore the vascular system. Adequate interpretation, however, requires knowledge about the most common technique-related artefacts. The purpose of this study was to identify and index the possible artefacts related to MPMCTA. MATERIAL AND METHODS: An experienced radiologist blinded to all clinical and forensic data retrospectively reviewed 49 MPMCTAs. Each angiographic phase, i.e. arterial, venous and dynamic, was analysed separately to identify phase-specific artefacts based on location and aspect. RESULTS: Incomplete contrast filling of the cerebral venous system was the most commonly encountered artefact, followed by contrast agent layering in the lumen of the thoracic aorta. Enhancement or so-called oedematization of the digestive system mucosa was also frequently observed. CONCLUSION: All MPMCTA artefacts observed and described here are reproducible and easily identifiable. Knowledge about these artefacts is important to avoid misinterpreting them as pathological findings.
Resumo:
The aim of this study was to compare postmortem angiography-based, autopsy-based and histology-based diagnoses of acute coronary thrombosis in a series of medicolegal cases that underwent postmortem angiographies according to multiphase CT-angiography protocol. Our study included 150 medicolegal cases. All cases underwent native CT-scan, postmortem angiography, complete conventional autopsy and histological examination of the main organs and coronary arteries. In 10 out of the 150 investigated cases, postmortem angiographies revealed coronary arterial luminal filling defects and the absence of collateral vessels, suggesting acute coronary thromboses. Radiological findings were confirmed by autopsy and histological examinations in all cases. In 40 out of 150 cases, angiograms revealed complete or incomplete coronary arterial luminal filling defects and the presence of collateral vessels. Histological examinations did not reveal free-floating or non-adherent thrombi in the coronary arteries in any of these cases. Though postmortem angiography examination has not been well-established for the diagnosis of acute coronary thrombosis, luminal filling defects in coronary arteries suggesting acute thromboses can be observed through angiography and subsequently confirmed by autopsy and histological examinations.
Resumo:
Multi-phase postmortem CT angiography (MPMCTA) is recognized as a valuable tool to explore the vascular system, with higher sensitivity than conventional autopsy. However, a limitation is the impossibility to diagnose pulmonary embolism (PE) due to post-mortem blood clots situated in pulmonary arteries. The purpose of this study was to explore an eventual possibility to distinguish between real PE and artefacts mimicking PE. Our study included 416 medico-legal cases. All of them underwent MPMCTA, conventional autopsy and histological examination. We selected cases presenting arterial luminal filling defects in the pulmonary arteries. Their radiological interpretation was confronted to the one of autopsy and histological examination. We also investigated an eventual correlation between artefacts in pulmonary arteries and those in other parts of the vascular system. In 123 cases, filling defects of pulmonary arteries were described during MPMCTA. In 57 cases, this was interpreted as artefact and in 4 cases as suspected PE. In 62 cases only a differential diagnosis was made. Autopsy and histology could clearly identify the artefacts as such. Only one case of real PE was radiologically misinterpreted as artefact. In 6 of the 62 cases with no interpretation a PE was diagnosed. In 3 out of 4 suspected cases, PE was confirmed. We found out that filling defects in pulmonary arteries are nearly always associated to other vascular artefacts. Therefore, we suggest following some rules for radiological interpretation in order to allow a reliable diagnosis of pulmonary embolism after MPMCTA.
Resumo:
Cases of fatal outcome after surgical intervention are autopsied to determine the cause of death and to investigate whether medical error caused or contributed to the death. For medico-legal purposes, it is imperative that autopsy findings are documented clearly. Modern imaging techniques such as multi-detector computed tomography (MDCT) and postmortem CT angiography, which is used for vascular system imaging, are useful tools for determining cause of death. The aim of this study was to determine the utility of postmortem CT angiography for the medico-legal death investigation. This study investigated 10 medico-legal cases with a fatal outcome after surgical intervention using multi-phase postmortem whole body CT angiography. A native CT scan was performed as well as three angiographic phases (arterial, venous, and dynamic) using a Virtangio((R)) perfusion device and the oily contrast agent, Angiofil((R)). The results of conventional autopsy were compared to those from the radiological investigations. We also investigated whether the radiological findings affected the final interpretation of cause-of-death. Causes of death were hemorrhagic shock, intracerebral hemorrhage, septic shock, and a combination of hemorrhage and blood aspiration. The diagnoses were made by conventional autopsy as well as by postmortem CT angiography. Hemorrhage played an important role in eight of ten cases. The radiological exam revealed the exact source of bleeding in seven of the eight cases, whereas conventional autopsy localized the source of bleeding only generally in five of the seven cases. In one case, neither conventional autopsy nor CT angiography identified the source of hemorrhage. We conclude that postmortem CT angiography is extremely useful for investigating deaths following surgical interventions. This technique helps document autopsy findings and allows a second examination if it is needed; specifically, it detects and visualizes the sources of hemorrhages in detail, which is often of particular interest in such cases.