919 resultados para Multi-method evaluation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper is proposed a model for researching the capability to influence, by selected methods’ groups of compression, to the co-efficient of information security of selected objects’ groups, exposed to selected attacks’ groups. With the help of methods for multi-criteria evaluation are chosen the methods’ groups with the lowest risk with respect to the information security. Recommendations for future investigations are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article, a real-world case- study is presented with two general objectives: to give a clear and simple illustrative example of application of social multi-criteria evaluation (SMCE) in the field of rural renewable energy policies, and to help in understanding to what extent and under which circumstances solar energy is suitable for electrifying isolated farmhouses. In this sense, this study might offer public decision- makers some insight on the conditions that favour the diffusion of renewable energy, in order to help them to design more effective energy policies for rural communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main argument developed here is the proposal of the concept of “Social Multi-Criteria Evaluation” (SMCE) as a possible useful framework for the application of social choice to the difficult policy problems of our Millennium, where, as stated by Funtowicz and Ravetz, “facts are uncertain, values in dispute, stakes high and decisions urgent”. This paper starts from the following main questions: 1. Why “Social” Multi-criteria Evaluation? 2. How such an approach should be developed? The foundations of SMCE are set up by referring to concepts coming from complex system theory and philosophy, such as reflexive complexity, post-normal science and incommensurability. To give some operational guidelines on the application of SMCE basic questions to be answered are: 1. How is it possible to deal with technical incommensurability? 2. How can we deal with the issue of social incommensurability? To answer these questions, by using theoretical considerations and lessons learned from realworld case studies, is the main objective of the present article.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to extract multi-parametric measures characterizing different features of sit-to-stand (Si-St) and stand-to-sit (St-Si) transitions in older persons, using a single inertial sensor attached to the chest. Investigated parameters were transition's duration, range of trunk tilt, smoothness of transition pattern assessed by its fractal dimension, and trunk movement's dynamic described by local wavelet energy. A measurement protocol with a Si-St followed by a St-Si postural transition was performed by two groups of participants: the first group (N=79) included Frail Elderly subjects admitted to a post-acute rehabilitation facility and the second group (N=27) were healthy community-dwelling elderly persons. Subjects were also evaluated with Tinetti's POMA scale. Compared to Healthy Elderly persons, frail group at baseline had significantly longer Si-St (3.85±1.04 vs. 2.60±0.32, p=0.001) and St-Si (4.08±1.21 vs. 2.81±0.36, p=0.001) transition's duration. Frail older persons also had significantly decreased smoothness of Si-St transition pattern (1.36±0.07 vs. 1.21±0.05, p=0.001) and dynamic of trunk movement. Measurements after three weeks of rehabilitation in frail older persons showed that smoothness of transition pattern had the highest improvement effect size (0.4) and discriminative performance. These results demonstrate the potential interest of such parameters to distinguish older subjects with different functional and health conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este estudio aborda un doble objetivo: a) conocer si existe progresión signi+cativa entre tres valores correspondientes al índice de Borg elicitados por jóvenes deportistas con relación a tres actividades de intensidad creciente; b) analizar la relación existente entre el índice de masa corporal (IMC) de los participantes con los valores de frecuencia cardíaca (FC) y la percepción de intensidad del esfuerzo (RPE). Método: Treinta y cinco deportistas jóvenes con una edad media de 18 y 28 años (21±0,5), realizaron 3 actividades que exigían una intensidad creciente de ejercicio: leve, moderada y vigorosa (ACSM, 2011). Se controló la frecuencia cardíaca mediante el dispositivo telemétrico Polar Team 2 y al +nalizar las tres actividades se administró tres veces la escala de Borg para obtener la RPE para cada actividad. Se ha complementado la metodología observacional indirecta (índices de Borg) con la metodología cuasiexperimental para obtener inferencias causales mediante un diseño sincrónico de variable de asignación conocida y grupo único. Se ha realizado un análisis de regresión múltiple, considerando la FC y la RPE como variables predictoras del IMC. Resultados: la RPE es creciente, acorde a las actividades, en todos los participantes, aunque en ningún caso la tendencia es estadísticamente signi+cativa. Prácticamente la cuarta parte del IMC se puede explicar por la FC y la RPE puesto que los participantes que tienen valores más altos de FC y de índice de Borg tienen también mayores valores de IMC. Este estudio puede proporcionar una visión de evaluación integrada entre los factores IMC, FC y la RPE, que suelen investigarse de modo aislado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An extensive off-line evaluation of the Noah/Single Layer Urban Canopy Model (Noah/SLUCM) urban land-surface model is presented using data from 15 sites to assess (1) the ability of the scheme to reproduce the surface energy balance observed in a range of urban environments, including seasonal changes, and (2) the impact of increasing complexity of input parameter information. Model performance is found to be most dependent on representation of vegetated surface area cover; refinement of other parameter values leads to smaller improvements. Model biases in net all-wave radiation and trade-offs between turbulent heat fluxes are highlighted using an optimization algorithm. Here we use the Urban Zones to characterize Energy partitioning (UZE) as the basis to assign default SLUCM parameter values. A methodology (FRAISE) to assign sites (or areas) to one of these categories based on surface characteristics is evaluated. Using three urban sites from the Basel Urban Boundary Layer Experiment (BUBBLE) dataset, an independent evaluation of the model performance with the parameter values representative of each class is performed. The scheme copes well with both seasonal changes in the surface characteristics and intra-urban heterogeneities in energy flux partitioning, with RMSE performance comparable to similar state-of-the-art models for all fluxes, sites and seasons. The potential of the methodology for high-resolution atmospheric modelling application using the Weather Research and Forecasting (WRF) model is highlighted. This analysis supports the recommendations that (1) three classes are appropriate to characterize the urban environment, and (2) that the parameter values identified should be adopted as default values in WRF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When studying hydrological processes with a numerical model, global sensitivity analysis (GSA) is essential if one is to understand the impact of model parameters and model formulation on results. However, different definitions of sensitivity can lead to a difference in the ranking of importance of the different model factors. Here we combine a fuzzy performance function with different methods of calculating global sensitivity to perform a multi-method global sensitivity analysis (MMGSA). We use an application of a finite element subsurface flow model (ESTEL-2D) on a flood inundation event on a floodplain of the River Severn to illustrate this new methodology. We demonstrate the utility of the method for model understanding and show how the prediction of state variables, such as Darcian velocity vectors, can be affected by such a MMGSA. This paper is a first attempt to use GSA with a numerically intensive hydrological model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When studying hydrological processes with a numerical model, global sensitivity analysis (GSA) is essential if one is to understand the impact of model parameters and model formulation on results. However, different definitions of sensitivity can lead to a difference in the ranking of importance of the different model factors. Here we combine a fuzzy performance function with different methods of calculating global sensitivity to perform a multi-method global sensitivity analysis (MMGSA). We use an application of a finite element subsurface flow model (ESTEL-2D) on a flood inundation event on a floodplain of the River Severn to illustrate this new methodology. We demonstrate the utility of the method for model understanding and show how the prediction of state variables, such as Darcian velocity vectors, can be affected by such a MMGSA. This paper is a first attempt to use GSA with a numerically intensive hydrological model

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000–2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., October–January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo–Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of secondary inorganic aerosol are suppressed in the models because relative humidity (RH) is biased far too low in the boundary layer and thus foggy conditions are poorly represented in current models, the nitrate aerosol is either missing or inadequately accounted for, and emissions from agricultural waste burning and biofuel usage are too low in the emission inventories. These common problems and possible causes found in multiple models point out directions for future model improvements in this important region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concentrations of sulfate, black carbon (BC) and other aerosols in the Arctic are characterized by high values in late winter and spring (so-called Arctic Haze) and low values in summer. Models have long been struggling to capture this seasonality and especially the high concentrations associated with Arctic Haze. In this study, we evaluate sulfate and BC concentrations from eleven different models driven with the same emission inventory against a comprehensive pan-Arctic measurement data set over a time period of 2 years (2008–2009). The set of models consisted of one Lagrangian particle dispersion model, four chemistry transport models (CTMs), one atmospheric chemistry-weather forecast model and five chemistry climate models (CCMs), of which two were nudged to meteorological analyses and three were running freely. The measurement data set consisted of surface measurements of equivalent BC (eBC) from five stations (Alert, Barrow, Pallas, Tiksi and Zeppelin), elemental carbon (EC) from Station Nord and Alert and aircraft measurements of refractory BC (rBC) from six different campaigns. We find that the models generally captured the measured eBC or rBC and sulfate concentrations quite well, compared to previous comparisons. However, the aerosol seasonality at the surface is still too weak in most models. Concentrations of eBC and sulfate averaged over three surface sites are underestimated in winter/spring in all but one model (model means for January–March underestimated by 59 and 37 % for BC and sulfate, respectively), whereas concentrations in summer are overestimated in the model mean (by 88 and 44 % for July–September), but with overestimates as well as underestimates present in individual models. The most pronounced eBC underestimates, not included in the above multi-site average, are found for the station Tiksi in Siberia where the measured annual mean eBC concentration is 3 times higher than the average annual mean for all other stations. This suggests an underestimate of BC sources in Russia in the emission inventory used. Based on the campaign data, biomass burning was identified as another cause of the modeling problems. For sulfate, very large differences were found in the model ensemble, with an apparent anti-correlation between modeled surface concentrations and total atmospheric columns. There is a strong correlation between observed sulfate and eBC concentrations with consistent sulfate/eBC slopes found for all Arctic stations, indicating that the sources contributing to sulfate and BC are similar throughout the Arctic and that the aerosols are internally mixed and undergo similar removal. However, only three models reproduced this finding, whereas sulfate and BC are weakly correlated in the other models. Overall, no class of models (e.g., CTMs, CCMs) performed better than the others and differences are independent of model resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a methodology to consider the effects of the integration of DG on planning. Since DG has potential to defer investments in networks, the impact of DG on grid capacity is evaluated. A multi-objective optimization tool based on the meta-heuristic MEPSO is used, supporting an alternative approach to exploiting the Pareto front features. Tests were performed in distinct conditions with two well-known distribution networks: IEEE-34 and IEEE-123. The results combined minimization and maximization in order to produce different Pareto fronts and determine the extent of the impact caused by DG. The analysis provides useful information, such as the identification of futures that should be considered in planning. A future means a set of realizations of all uncertainties. MEPSO also presented a satisfactory performance in obtaining the Pareto fronts. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decision tree induction algorithms represent one of the most popular techniques for dealing with classification problems. However, traditional decision-tree induction algorithms implement a greedy approach for node splitting that is inherently susceptible to local optima convergence. Evolutionary algorithms can avoid the problems associated with a greedy search and have been successfully employed to the induction of decision trees. Previously, we proposed a lexicographic multi-objective genetic algorithm for decision-tree induction, named LEGAL-Tree. In this work, we propose extending this approach substantially, particularly w.r.t. two important evolutionary aspects: the initialization of the population and the fitness function. We carry out a comprehensive set of experiments to validate our extended algorithm. The experimental results suggest that it is able to outperform both traditional algorithms for decision-tree induction and another evolutionary algorithm in a variety of application domains.