943 resultados para Multi-drug resistant bacteria
Resumo:
RESUMO: Sessenta e três derivados de hidantoína foram utilizados para avaliar possíveis efeitos de modulação na actividade das bombas de efluxo (BE) na Salmonella NCTC 13349 utilizando um método fluorimétrico semi-automático. Nenhum dos compostos apresentaram actividade anti-bacteriana até concentrações de 240 mg/L. Entre todos os compostos, SZ-7 demonstrou possuir propriedades de modulação de effluxo na presença de glucose. Para testar esta actividade, estirpes de Salmonella resistentes à ciprofloxacina, induzidas a elevados níveis de resistência com sobre-expressão de BE, foram expostas ao SZ-7. Este derivado afectou a susceptibilidade das estirpes à ciprofloxacina. Uma vez que os 63 compostos estudados apresentaram pouco efeito inibitório /cumulativo, apesar de serem conhecidos pelos seus efeitos moduladores de BE-dependentes de iões em eucariotas, foi questionado o papel dos iões na regulação de BE bacterianas, que poderão influenciar a eficácia de novos compostos. Para este estudo, utilizamos a Escherichia coli AG100 como modelo, devido ao extenso conhecimento no que respeita a estrutura e actividade das BE. Devido à importância de iões de cálcio (Ca2+) nos canais de transporte membranar e na actividade de ATPases, a sua actividade na modulação do efluxo foi investigada. De resultados anteriormente obtidos concluiu-se que a pH 5 o efluxo é independente de energia metabólica; contudo, a pH 8 é absolutamente dependente, sendo que o Ca2+ é indispensável para manter a actividade das ATPases bacterianas. A acumulação/effluxo de EtBr pela E. coli AG100 foi determinada na presença/ausência de Ca2+, clorpromazina (inibidor de ligação de Ca2+ a proteínas), e ácido etilenodiamino tetra-acético (quelante de Ca2+). Acumulação/effluxo aumentou a pH 8, contudo o Ca2+ reverte estes efeitos evidenciando a sua importância no funcionamento das BE bacterianas. Em resumo este trabalho colocou em evidência que muitos aspectos bioquímicos e bioenergéticos devem ser tomados em consideração no estudo da resistência bacteriana mediada por BE.------- ABSTRACT: Sixty-three hydantoin derivatives were evaluated for their modulating effects on efflux pump (EP) activity of Salmonella NCTC 13349 utilizing a semi-automatic fluorometric method. None of the compounds presented antibacterial activities at concentrations as high as 240 mg/L. Among all compounds, SZ-7 showed possible efflux modulating activity in the presence of glucose, indicative of a potential EP inhibitor. To verify its potential effects, ciprofloxacin-resistant Salmonella strains, induced to high level resistance with over-expressing EPs, were exposed to SZ-7. This derivative affected the susceptibility of the ciprofloxacin-resistant strains. Since the 63 compounds studied had very low inhibitory/accumulative effects, even though their known for being efficient in modulating ion-driven eukaryotic EPs, we questioned whether ions had a leading role in regulating bacterial EPs, influencing the effectiveness of new compounds. For this study we used Escherichia coli AG100 as a model, due to the extensive knowledge on its EPs structure and activity. Owing the importance of calcium ions (Ca2+) for membrane transport channels and activity of ATPases, the role of Ca2+ was investigated. From previous results we concluded that at pH 5 efflux is independent of metabolic energy; however, at pH 8 it is entirely dependent of metabolic energy and the Ca2+ ions are essential to maintain the activity of bacterial ATPases. Accumulation and efflux of ethidium bromide (EtBr) by E. coli AG100 was determined in the presence and absence of Ca2+, chlorpromazine (inhibitor of Ca2+-binding to proteins), and ethylenediaminetetraacetic acid (Ca2+ chelator). Accumulation of EtBr increased at pH 8; however Ca2+ reversed these effects providing information as to the importance of this ion in the regulation of bacterial EP systems. Overall this work puts in evidence that many biochemical and bioenergetic aspects related to the strains physiology need to be taken into consideration in bacterial drug resistance mediated by EPs.
Resumo:
Information for patients and visitors on MDR bacteria and how to help prevent the spread of infection.Accessible formatsThe below document is available as a pdf and in accessible formats.�Accessible formats are alternatives to printed information, used by people who are blind or visually impaired. These accessible formats include HTML, audio and braille. �For audio and HTML copies please click on the links below. For braille copies please contact Caroline McGeary on 0300 555 0114.
Resumo:
Background: The emergence of multiple-drug resistance bacteria has become a major threat and thus calls for an urgent need to search for new effective and safe anti-bacterial agents. Objectives: This study aims to evaluate the anticancer and antibacterial activities of secondary metabolites from Penicillium sp. , an endophytic fungus associated with leaves of Garcinia nobilis . Methods: The culture filtrate from the fermentation of Penicillium sp. was extracted and analyzed by liquid chromatography– mass spectrometry, and the major metabolites were isolated and identified by spectroscopic analyses and by comparison with published data. The antibacterial activity of the compounds was assessed by broth microdilution method while the anticancer activity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Results: The fractionation of the crude extract afforded penialidin A-C (1-3), citromycetin (4), p-hydroxyphenylglyoxalaldoxime (5) and brefelfin A (6). All of the compounds tested here showed antibacterial activity (MIC = 0.50 – 128 μg/mL) against Gramnegative multi-drug resistance bacteria, Vibrio cholerae (causative agent of dreadful disease cholera) and Shigella flexneri (causative agent of shigellosis), as well as the significant anticancer activity (LC50 = 0.88 – 9.21 μg/mL) against HeLa cells. Conclusion: The results obtained indicate that compounds 1-6 showed good antibacterial and anticancer activities with no toxicity to human red blood cells and normal Vero cells.
Resumo:
Aeromonas salmonicida AS03, a potential fish pathogen, was isolated from Atlantic salmon, Salmo salar, in 2003. This strain was found to be resistant to ≥1000 mM HgCl2 and ≥32 mM phenylmercuric acetate as well as multiple antimicrobials. Mercury (Hg) and antibiotic resistance genes are often located on the same mobile genetic elements, so the genetic determinants of both resistances and the possibility of horizontal gene transfer were examined. Specific PCR primers were used to amplify and sequence distinctive regions of the mer operon. A. salmonicida AS03 was found to have a pDU1358-like broad-spectrum mer operon, containing merB as well as merA, merD, merP, merR and merT, most similar to Klebsiella pneumonaie plasmid pRMH760. To our knowledge, the mer operon has never before been documented in Aeromonas spp. PCR and gene sequencing were used to identify class 1 integron associated antibiotic resistance determinants and the Tet A tetracycline resistance gene. The transposase and resolvase genes of Tn1696 were identified through PCR and sequencing with Tn21 specific PCR primers. We provide phenotypic and genotypic evidence that the mer operon, the aforementioned antibiotic resistances, and the Tn1696 transposition module are located on a single plasmid or conjugative transposon that can be transferred to E. coli DH5α through conjugation in the presence of low level Hg and absence of any antibiotic selective pressure. Additionally, the presence of low-level Hg or chloramphenicol in the mating media was found to stimulate conjugation, significantly increasing the transfer frequency of conjugation above the transfer frequency measured with mating media lacking both antibiotics and Hg. This research demonstrates that mercury indirectly selects for the dissemination of the antibiotic resistance genes of A. salmonicida AS03.
Resumo:
An increase in the number of new cases of tuberculosis (TB) combined with poor clinical outcome was identified among HIV-infected injecting drug users attending a large HIV unit in central Lisbon. A retrospective epidemiological and laboratory study was conducted to review all newly diagnosed cases of TB from 1995 to 1996 in the HIV unit. Results showed that from 1995 to 1996, 63% (109/173) of the Mycobacterium tuberculosis isolates from HIV-infected patients were resistant to one or more anti-tuberculosis drugs; 89% (95) of these were multidrug-resistant, i.e., resistant to at least isoniazid and rifampicin. Eighty percent of the multidrug-resistant strains (MDR) available for restriction fragment length polymorphism (RFLP) DNA fingerprinting clustered into one of two large clusters. Epidemiological data support the conclusion that the transmission of MDR-TB occurred among HIV-infected injecting drug users exposed to infectious TB cases on open wards in the HIV unit. Improved infection control measures on the HIV unit and the use of empirical therapy with six drugs once patients were suspected to have TB, reduced the incidence of MDR-TB from 42% of TB cases in 1996 to 11% in 1999.
Resumo:
The objective of the study was to evaluate the survival response of multi-drug resistant enteropathogenic Escherichia coli and Salmonella paratyphi to the salinity fluctuations induced by a saltwater barrier constructed in Vembanadu lake, which separates the lake into a freshwater dominated southern and brackish water dominated northern part. Therefore, microcosms containing freshwater, brackish water and microcosms with different saline concentrations (5, 10, 15, 20, 25 ppt) inoculated with E. coli/S. paratyphi were monitored up to 34 days at 20 and 30 WC. E. coli and S. paratyphi exhibited significantly higher (p <0.05) survival at 20 WC compared to 30 WC in all microcosms. Despite fresh/brackish water, E. coli and S. paratyphi showed prolonged survival up to 34 days at both temperatures. They also demonstrated better survival potential at all tested saline concentrations except 25 ppt where a significantly higher (p<0.0001) decay was observed. Therefore, enhanced survival exhibited by the multi-drug resistant enteropathogenic E. coli and S. paratyphi over a wide range of salinity levels suggest that they are able to remain viable for a very long time at higher densities in all seasons of the year in Vembanadu lake irrespective of saline concentrations, and may pose potential public health risks during recreational activities
Resumo:
A toatal of 81 Escherichia coliisolates belonging to 43 different serotypes including several pathogenic strains such as enterotoxigenic E.coli isolated from a tropical estuary were tested against 12 antibiotics to determine the prevelance of multiple antibiotic resistance, antimicrobial resistance profiles and also to find out high risk source of contamination by MAR indexing.
Resumo:
Biofilm forming multidrug resistant Staphylococcus spp. are major reservoirs for transmission of ophthalmic infections. They were isolated from ocular patients suffering from conjunctivitis. In this study we analyzed biofilm forming ability, antibiotic resistance profile of the Staphylococcus spp. isolated from clinical ocular patients, and their phylogenetic relationship with other community MRSA. Sixty Staphylococcus spp. strains isolated from clinical subjects were evaluated for their ability to form biofilm and express biofilm encoding ica gene. Among them 93% were slime producers and 87% were slime positive. Staphylococcus aureus and S. epidermidis were dominant strains among the isolates obtained from ocular patients. The strains also exhibited a differential biofilm formation quantitatively. Antibiotic susceptibility of the strains tested with Penicillin G, Ciprofloxacin, Ofloxacin, Methicillin, Amikacin, and Gentamicin indicated that they were resistant to more than one antibiotic. The amplicon of ica gene of strong biofilm producing S. aureus strains, obtained by polymerase chain reaction, was sequenced and their close genetic relationship with community acquired MRSA was analyzed based on phylogenetic tree. Our results indicate that they are genetically close to other community acquired MRSA
Resumo:
Aeromonas salmonicida AS03, a potential fish pathogen, was isolated from Atlantic salmon, Salmo salar, in 2003. This strain was found to be resistant to ≥1000 mM HgCl2 and ≥32 mM phenylmercuric acetate as well as multiple antimicrobials. Mercury (Hg) and antibiotic resistance genes are often located on the same mobile genetic elements, so the genetic determinants of both resistances and the possibility of horizontal gene transfer were examined. Specific PCR primers were used to amplify and sequence distinctive regions of the mer operon. A. salmonicida AS03 was found to have a pDU1358-like broad-spectrum mer operon, containing merB as well as merA, merD, merP, merR and merT, most similar to Klebsiella pneumonaie plasmid pRMH760. To our knowledge, the mer operon has never before been documented in Aeromonas spp. PCR and gene sequencing were used to identify class 1 integron associated antibiotic resistance determinants and the Tet A tetracycline resistance gene. The transposase and resolvase genes of Tn1696 were identified through PCR and sequencing with Tn21 specific PCR primers. We provide phenotypic and genotypic evidence that the mer operon, the aforementioned antibiotic resistances, and the Tn1696 transposition module are located on a single plasmid or conjugative transposon that can be transferred to E. coli DH5α through conjugation in the presence of low level Hg and absence of any antibiotic selective pressure. Additionally, the presence of low-level Hg or chloramphenicol in the mating media was found to stimulate conjugation, significantly increasing the transfer frequency of conjugation above the transfer frequency measured with mating media lacking both antibiotics and Hg. This research demonstrates that mercury indirectly selects for the dissemination of the antibiotic resistance genes of A. salmonicida AS03.
Resumo:
We investigated the distribution of commensal staphylococcal species and determined the prevalence of multi-drug resistance in healthy cats and dogs. Risk factors associated with the carriage of multi-drug resistant strains were explored. Isolates from 256 dogs and 277 cats were identified at the species level using matrix-assisted laser desorption ionisation-time of flight mass spectrometry. The diversity of coagulase-negative Staphylococci (CNS) was high, with 22 species in dogs and 24 in cats. Multi-drug resistance was frequent (17%) and not always associated with the presence of the mecA gene. A stay in a veterinary clinic in the last year was associated with an increased risk of colonisation by multi-drug resistant Staphylococci (OR = 2.4, 95% CI: 1.1˜5.2, p value LRT = 0.04). When identifying efficient control strategies against antibiotic resistance, the presence of mechanisms other than methicillin resistance and the possible role of CNS in the spread of resistance determinants should be considered.
Resumo:
Risk factors for Multi-Drug Resistant Acinetobacter (MDRA) acquisition were studied in patients in a burn intensive care unit (ICU) where there was an outbreak of MDRA. Forty cases were matched with eighty controls based on length of stay in the Burn ICU and statistical analysis was performed on data for several different variables. Matched analysis showed that mechanical ventilation, transport ventilation, number of intubations, number of bronchoscopy procedures, total body surface area burn, and prior Methicillin Resistant Staphylococcus aureus colonization were all significant risk factors for MDRA acquisition. ^ MDRA remains a significant threat to the burn population. Treatment for burn patients with MDRA is challenging as resistance to antibiotics continues to increase. This study underlined the need to closely monitor the most critically ill ventilated patients during an outbreak of MDRA as they are the most at risk for MDRA acquisition.^
Resumo:
Plasmids that contain synthetic genes coding for small oligoribonucleotides called external guide sequences (EGSs) have been introduced into strains of Escherichia coli harboring antibiotic resistance genes. The EGSs direct RNase P to cleave the mRNAs transcribed from these genes thereby converting the phenotype of drug-resistant cells to drug sensitivity. Increasing the EGS-to-target mRNA ratio by changing gene copy number or the number of EGSs complementary to different target sites enhances the efficiency of the conversion process. We demonstrate a general method for the efficient phenotypic conversion of drug-resistant bacterial cultures.