90 resultados para Msw
Resumo:
The characteristics of municipal solid waste (MSW) play a key role in many aspects of waste disposal facilities and landfills. Because most of a landfill is made up of MSW, the overall stability of the landfill slopes are governed by the strength parameters and physical properties of the MSW. These parameters are also important in interactions involving the waste body and the landfill structures: cover liner, leachate and gas collection systems. On the other hand, the composition of the waste, which affects the geotechnical behavior of the MSW, is dependent on a variety of factors such as climate, disposal technology, the culture and habits of the local community. It is therefore essential that the design and stability evaluations of landfills in each region be performed based on the local conditions and the geotechnical characteristic of the MSW. The Bandeirantes Landfill, BL, in Sao Paulo and the Metropolitan Center Landfill, MCL, in Salvador, are among the biggest landfills in Brazil. These two disposal facilities have been used for the development of research involving waste mechanics in recent years. Considerable work has been made in the laboratory and in the field to evaluate parameters such as water and organic contents, composition, permeability, and shear strength. This paper shows and analyzes the results of tests performed on these two landfills. The authors believe that these results could be a good reference for certain aspects and geotechnical properties of MSW materials in countries with similar conditions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia do ambiente, perfil de engenharia sanitária
Resumo:
Energy generation is needed in São Paulo and MSW represents a promising alternative, although it is more expensive than hydroelectric power. About 14 900 t/day of MSW is generated, of which 8433 t/day is domestic and commercial MSW. From this amount, 1800 t will be destined to generate 30 MW of power. The eco-balance of CO2 has been considered for incineration and recycling. The recycling program of plastics, metals, paper and glass would represent a significant reduction in energy and CO2 emission. The total CO2 released is 3.34 x 10(5) t/yr without recycling. and is 1.25 x 10(5) t/yr with a recycling program. Most of the CO2 comes from plastics and paper production. Economic aspects could probably favor Incineration with energy production as the best option. (C) 1998 Published by Elsevier B.V. Ltd. All rights reserved.
Resumo:
A biophysical understanding of the MSW-to-energy facility located at the Sao Joao landfill in São Paulo is performed using emergy synthesis. The implementation of a plan for environmental compensation in fulfillment of State's requirements was also assessed. Emergy based indices are calculated to assess the environmental pressure and sustainability status of the biogas project. The study was conducted by combining the study of emergy indicators and the net emergy yield ratio to determine long-term sustainability and measure global environmental stress. The Emergy investment to the use of biogas is relatively low and profitable. The implementation of the project for environmental compensation does not change the Emergy investment significantly, but the energy recovery is high. The conclusions justify the effort invested in developing MSW-to-energy plants and are applicable for policy makers in a highly sensitive sector to achieve sustainability goals - recovery of energy.
Resumo:
Children investigated by child welfare are at significant risk for poor cognitive, emotional, social, behavioral and economic outcomes. In 2000, California formed the Child Welfare Services Group to propose changes in how child welfare services are delivered, the CWS Redesign. California State University, Long Beach’s child welfare training program developed its complement. Fundamentally, Redesign calls for partnering with families and communities to strengthen families, prevent unnecessary placements or re-unite families successfully. These changes are a paradigm shift in attitudes toward birth families and communities. In a qualitative study, interns logged their observations and subsequent impressions of CWS-Client encounters to explore how attitudes are learned. Majority of interns observed positive, collaborative encounters and perceived birth parents as motivated. Their impressions support introducing interns to birth families on the front-end of CWS training.
Resumo:
An exhaustive characterization of the biogas from some waste disposal facilities has been carried out. The analysis includes the main components (methane, carbon dioxide, nitrogen and oxygen) as well as trace components such as hydrogen sulphide, ammonia and VOCs (volatile organic compounds) including siloxanes and halogenated compounds. VOCs were measured by GC/MS (Gas Chromatography/Mass Spectrometry) using two different procedures: thermal desorption of the Tenax TA and Carbotrap 349 tubes and SPME (Solid Phase Micro-Extraction). A method has been established to measure the total halogen content of the biogas with the AOX (adsorbable organically bound halogens) technique. The equipment used to analyze the samples was a Total Organic Halogen Analyzer (TOX-100). Similar results were obtained when comparing the TOX (Total Organic Halogen) values with those obtained by GC/MS. The halogen content in all the samples was under 22 mg Cl/Nm3 which is below the limit of 150 mg/Nm3 proposed in the Spanish Regulations for any use of the biogas. The low chlorine content in the biogas studied, as well as the low content of other trace compounds, makes it suitable for use as a fuel for electricity generating engines.
Resumo:
Includes index.
Resumo:
Includes index.
Resumo:
Municipal Solid Waste is one of the biggest challenges that cities are facing: MSW is considered of the main sources of energy consumption, urban degradation and pollution. This paper defines the major negative effects of MSW on cities and proposes new solutions to guide waste policies. Most contemporary waste management efforts are focused at regional government level and based on high tech waste disposal by methods such as landfill and incineration. However, these methods are becoming increasingly expensive, energy inefficient and pollutant: waste disposal is not sustainable and will have negative implications for future generations. In this paper are proposed all the principle solutions that could be undertaken. New policy instruments are presented updating and adapting policies and encouraging innovation for less wasteful systems. Waste management plans are fundamental to increase the ability of urban areas effectively to adapt to waste challenges. These plans have to give an outline of waste streams and treatment options and provide a scenario for the following years that significantly reduce landfills and incinerators in favor of prevention, reuse and recycling. The key aim of an urban waste management plan is to set out the work towards a zero waste economy as part of the transition to a sustainable economy. Other questions remain still opened: How to change people’s behavior? What is the role of environmental education and risk perception? It is sure that the involvement of the various stakeholders and the wider public in the planning process should aim at ensuring acceptance of the waste policy.
Resumo:
In order to fulfil European and Portuguese legal requirements, adequate alternatives to traditional municipal waste landfilling must be found namely concerning organic wastes and others susceptible of valorisation. According to the Portuguese Standard NP 4486:2008, refuse derived fuels (RDF) classification is based on three main parameters: lower heating value (considered as an economic parameter), chlorine content (considered as a technical parameter) and mercury content (considered as an environmental parameter). The purpose of this study was to characterize the rejected streams resulting from the mechanical treatment of unsorted municipal solid waste, from the plastic municipal selective collection and from the composting process, in order to evaluate their potential as RDF. To accomplish this purpose six sampling campaigns were performed. Chemical characterization comprised the proximate analysis – moisture content, volatile matter, ashes and fixed carbon, as well as trace elements. Physical characterization was also done. To evaluate their potential as RDF, the following parameters established in the Portuguese standard were also evaluated: heating value and chlorine content. As expected, results show that the refused stream from mechanical treatment is rather different from the selective collection rejected stream and from the rejected from the compost screening in terms of moisture, energetic matter and ashes, as well as heating value and chlorine. Preliminary data allows us to conclude that studied materials have a very interesting potential to be used as RDF. In fact, the rejected from selective collection and the one from composting have a heating value not very different from coal. Therefore, an important key factor may be the blending of these materials with others of higher heating values, after pre-processing, in order to get fuel pellets with good consistency, storage and handling characteristics and, therefore, combustion behavior.
Resumo:
Research of advanced technologies for energy generation contemplates a series of alternatives that are introduced both in the investigation of new energy sources and in the improvement and/or development of new components and systems. Even though significant reductions are observed in the amount of emissions, the proposed alternatives require the use of exhaust gases cleaning systems. The results of environmental analyses based on two configurations proposed for urban waste incineration are presented in this paper; the annexation of integer (Boolean) variables to the environomic model makes it possible to define the best gas cleaning routes based on exergetic cost minimisation criteria. In this first part, the results for steam cogeneration system analysis associated with the incineration of municipal solid wastes (MSW) is presented. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In the first paper of this paper (Part I), conditions were presented for the gas cleaning technological route for environomic optimisation of a cogeneration system based in a thermal cycle with municipal solid waste incineration. In this second part, an environomic analysis is presented of a cogeneration system comprising a combined cycle composed of a gas cycle burning natural gas with a heat recovery steam generator with no supplementary burning and a steam cycle burning municipal solid wastes (MSW) to which will be added a pure back pressure steam turbine (another one) of pure condensation. This analysis aims to select, concerning some scenarios, the best atmospheric pollutant emission control routes (rc) according to the investment cost minimisation, operation and social damage criteria. In this study, a comparison is also performed with the results obtained in the Case Study presented in Part I. (c) 2007 Elsevier Ltd. All rights reserved.